BROWSE

Related Scientist

cqn's photo.

cqn
양자나노과학연구단
more info

ITEM VIEW & DOWNLOAD

Defect passivation of transition metal dichalcogenides via a charge transfer van der Waals interface

DC Field Value Language
dc.contributor.authorJun Hong Park-
dc.contributor.authorAtresh Sanne-
dc.contributor.authorYuzheng Guo-
dc.contributor.authorMatin Amani-
dc.contributor.authorKehao Zhang-
dc.contributor.authorHema C. P. Movva-
dc.contributor.authorJoshua A. Robinson-
dc.contributor.authorAli Javey-
dc.contributor.authorJohn Robertson-
dc.contributor.authorSanjay K. Banerjee-
dc.contributor.authorAndrew C. Kummel-
dc.date.available2018-01-09T07:12:14Z-
dc.date.created2018-01-03-
dc.date.issued2017-10-
dc.identifier.issn2375-2548-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/4195-
dc.description.abstractIntegration of transition metal dichalcogenides (TMDs) into next-generation semiconductor platforms has been limited due to a lack of effective passivation techniques for defects in TMDs. The formation of an organic-inorganic van der Waals interface between a monolayer (ML) of titanyl phthalocyanine (TiOPc) and a ML of MoS2 is investigated as a defect passivation method. A strong negative charge transfer from MoS2 to TiOPc molecules is observed in scanning tunneling microscopy. As a result of the formation of a van der Waals interface, the ION/IOFF in back-gated MoS2 transistors increases by more than two orders of magnitude, whereas the degradation in the photoluminescence signal is suppressed. Density functional theory modeling reveals a van der Waals interaction that allows sufficient charge transfer to remove defect states in MoS2. The present organic-TMD interface is a model system to control the surface/interface states in TMDs by using charge transfer to a van der Waals bonded complex. 2017 © The Authors, some rights reserved-
dc.description.uri1-
dc.language영어-
dc.publisherAMER ASSOC ADVANCEMENT SCIENCE-
dc.titleDefect passivation of transition metal dichalcogenides via a charge transfer van der Waals interface-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000417998700042-
dc.identifier.scopusid2-s2.0-85041858896-
dc.identifier.rimsid61859ko
dc.date.tcdate2018-10-01-
dc.contributor.affiliatedAuthorJun Hong Park-
dc.identifier.doi10.1126/sciadv.1701661-
dc.identifier.bibliographicCitationSCIENCE ADVANCES, v.3, no.10, pp.e1701661 - e1701666-
dc.citation.titleSCIENCE ADVANCES-
dc.citation.volume3-
dc.citation.number10-
dc.citation.startPagee1701661-
dc.citation.endPagee1701666-
dc.date.scptcdate2018-10-01-
dc.description.wostc6-
dc.description.scptc10-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Appears in Collections:
Center for Quantum Nanoscience(양자나노과학 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
2017 Science Advances 3_ e1701661 (2017)..pdfDownload

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse