BROWSE

Related Scientist

cnir's photo.

cnir
뇌과학이미징연구단
more info

ITEM VIEW & DOWNLOAD

Surface energy-tunable iso decyl acrylate based molds for low pressure-nanoimprint lithography

DC Field Value Language
dc.contributor.authorHyowon Tak-
dc.contributor.authorDongha Tahk-
dc.contributor.authorChanho Jeong-
dc.contributor.authorSori Lee-
dc.contributor.authorTae-il Kim-
dc.date.available2017-12-19T00:54:55Z-
dc.date.created2017-10-19-
dc.date.issued2017-10-
dc.identifier.issn0957-4484-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/4069-
dc.description.abstractWe presented surface energy-tunable nanoscale molds for unconventional lithography. The mold is highly robust, transparent, has a minimized haze, does not contain additives, and is a non-fluorinated isodecyl acrylate and trimethylolpropane triacrylate based polymer. By changing the mixing ratio of the polymer components, the cross-linking density, mechanical modulus, and surface energy (crucial factors in low pressure ((1-2) x 10(5) N m(-2)) low pressure-nanoimprint lithography (LP-NIL)), can be controlled. To verify these properties of the molds, we also characterized the surface energy by measuring the contact angles and calculating the work of adhesion among the wafer, polymer film, and mold for successful demolding in nanoscale structures. Moreover, the molds showed high optical clarity and precisely tunable mechanical and surface properties, capable of replicating sub-100 nm patterns by thermal LP-NIL and UV-NIL. © 2017 IOP Publishing Ltd Printed in the UK-
dc.description.uri1-
dc.language영어-
dc.publisherIOP PUBLISHING LTD-
dc.subjectunconventional lithography-
dc.subjectsurface energy-
dc.subjectlow pressure nanoimprint lithography-
dc.subjecthaze-
dc.subjectcross-linking density-
dc.titleSurface energy-tunable iso decyl acrylate based molds for low pressure-nanoimprint lithography-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000410610400001-
dc.identifier.scopusid2-s2.0-85029513883-
dc.identifier.rimsid60545-
dc.date.tcdate2018-10-01-
dc.contributor.affiliatedAuthorChanho Jeong-
dc.contributor.affiliatedAuthorTae-il Kim-
dc.identifier.doi10.1088/1361-6528/aa8135-
dc.identifier.bibliographicCitationNANOTECHNOLOGY, v.28, no.40, pp.405301-
dc.citation.titleNANOTECHNOLOGY-
dc.citation.volume28-
dc.citation.number40-
dc.citation.startPage405301-
dc.date.scptcdate2018-10-01-
dc.description.scptc0-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordPlusCAPILLARY FORCE LITHOGRAPHY-
dc.subject.keywordPlusSOFT LITHOGRAPHY-
dc.subject.keywordPlusPHASE-BEHAVIOR-
dc.subject.keywordPlusREQUIREMENTS-
dc.subject.keywordPlusTRANSPARENT-
dc.subject.keywordPlusPOLYMERS-
dc.subject.keywordPlusSTAMPS-
dc.subject.keywordAuthorunconventional lithography-
dc.subject.keywordAuthorsurface energy-
dc.subject.keywordAuthorlow pressure nanoimprint lithography-
dc.subject.keywordAuthorhaze-
dc.subject.keywordAuthorcross-linking density-
Appears in Collections:
Center for Neuroscience Imaging Research (뇌과학 이미징 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
39_김태일_Surface Energy-Tunable Iso Decyl Acrylate based Molds...pdfDownload

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse