Application of metallic magnetic calorimeter in rare event search
DC Field | Value | Language |
---|---|---|
dc.contributor.author | I Kim | - |
dc.contributor.author | H S Jo | - |
dc.contributor.author | C S Kang | - |
dc.contributor.author | G B Kim | - |
dc.contributor.author | H L Kim | - |
dc.contributor.author | S R Kim | - |
dc.contributor.author | Y H Kim | - |
dc.contributor.author | H J Lee | - |
dc.contributor.author | J H Lee | - |
dc.contributor.author | M K Lee | - |
dc.contributor.author | S Y Oh | - |
dc.contributor.author | J H So | - |
dc.date.available | 2017-12-06T05:04:03Z | - |
dc.date.created | 2017-11-17 | - |
dc.date.issued | 2017-09 | - |
dc.identifier.issn | 0953-2048 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/4010 | - |
dc.description.abstract | Metallic magnetic calorimeters (MMCs) are highly sensitive temperature sensors that use the paramagnetic nature of erbium in a metallic host and superconducting electronics usually composed of a superconducting niobium coil and a current sensing superconducting quantum interference device. This article discusses the applicability of MMCs in experimental searches for rare events in particle physics. A detector module using two MMCs was built to perform low-temperature measurements of heat and scintillation light generated by particle interaction in a 340 g 40Ca100MoO4 crystal. The energy transfer mechanism, from incident particles to the components of the heat and light sensors, is described through a thermal model. MMCs, with gold films collecting athermal phonons, can be used over wide ranges of operating temperature and crystal volume without a significant change in detector performances. Rare event searches could thus benefit from MMC-based detectors presenting such flexibility as well as excellent energy resolution and particle discrimination power. © 2017 IOP Publishing Ltd | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | IOP PUBLISHING LTD | - |
dc.subject | low-temperature detector | - |
dc.subject | metallic magnetic calorimeter | - |
dc.subject | scintillating crystal | - |
dc.subject | SQUID | - |
dc.title | Application of metallic magnetic calorimeter in rare event search | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000407435700001 | - |
dc.identifier.scopusid | 2-s2.0-85032824559 | - |
dc.identifier.rimsid | 60935 | ko |
dc.date.tcdate | 2018-10-01 | - |
dc.contributor.affiliatedAuthor | I Kim | - |
dc.contributor.affiliatedAuthor | H S Jo | - |
dc.contributor.affiliatedAuthor | C S Kang | - |
dc.contributor.affiliatedAuthor | G B Kim | - |
dc.contributor.affiliatedAuthor | H L Kim | - |
dc.contributor.affiliatedAuthor | S R Kim | - |
dc.contributor.affiliatedAuthor | Y H Kim | - |
dc.contributor.affiliatedAuthor | H J Lee | - |
dc.contributor.affiliatedAuthor | S Y Oh | - |
dc.contributor.affiliatedAuthor | J H So | - |
dc.identifier.doi | 10.1088/1361-6668/aa7c73 | - |
dc.identifier.bibliographicCitation | SUPERCONDUCTOR SCIENCE & TECHNOLOGY, v.30, no.9, pp.094005 | - |
dc.citation.title | SUPERCONDUCTOR SCIENCE & TECHNOLOGY | - |
dc.citation.volume | 30 | - |
dc.citation.number | 9 | - |
dc.citation.startPage | 094005 | - |
dc.date.scptcdate | 2018-10-01 | - |
dc.description.wostc | 2 | - |
dc.description.scptc | 2 | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordAuthor | low-temperature detector | - |
dc.subject.keywordAuthor | metallic magnetic calorimeter | - |
dc.subject.keywordAuthor | scintillating crystal | - |
dc.subject.keywordAuthor | SQUID | - |