The transition metal surface dependent methane decomposition in graphene chemical vapor deposition growth
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Xinlan Wang | - |
dc.contributor.author | Qinghong Yuan | - |
dc.contributor.author | Jia Li | - |
dc.contributor.author | Feng Ding | - |
dc.date.available | 2017-10-19T02:28:40Z | - |
dc.date.created | 2017-09-25 | - |
dc.date.issued | 2017-08 | - |
dc.identifier.issn | 2040-3364 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/3880 | - |
dc.description.abstract | By using density-functional theory (DFT) calculations, the dissociation of CH4 on various metal surfaces, including Ni, Cu, Ru, Pd, Pt, Ir, Co, Au, and Rh, is systematically explored. For all the explored facecentered cubic (fcc) metal substrates, the (100) surface is found to be more active than the (111) surface, which explains the higher activity of the (100) surface in graphene chemical vapor deposition (CVD) growth. The catalytic activity order of these metals is found to be Ni approximate to Rh approximate to Co approximate to Ru > Pd approximate to Pt approximate to Ir > Cu > Au, which explained the catalyst type dependent growth behavior of graphene. It was found that the main dissociation product of CH4 on Ni, Pd, Pt, Ir, Rh, Co, and Ru substrates is a carbon monomer and a very high rate of dissociation is expected, but a low rate of dissociation and the dissociation products of CHi (i = 1, 2, 3) are expected on Cu and Au surfaces, which explained the diffusion-limited growth of graphene on Cu and Au surfaces and attachment limited growth on other active metal surfaces. Furthermore, our study shows that the dissociation of CH4 on all these metal substrates follows the well-known Bronsted-Evans-Polanyi (BEP) principles, or the reaction barrier is roughly linear to the reaction energy. This journal is © The Royal Society of Chemistry 2017 Published on 30 June 2017. | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | ROYAL SOC CHEMISTRY | - |
dc.title | The transition metal surface dependent methane decomposition in graphene chemical vapor deposition growth | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000407812000025 | - |
dc.identifier.scopusid | 2-s2.0-85027590359 | - |
dc.identifier.rimsid | 60186 | - |
dc.date.tcdate | 2018-10-01 | - |
dc.contributor.affiliatedAuthor | Feng Ding | - |
dc.identifier.doi | 10.1039/c7nr02743e | - |
dc.identifier.bibliographicCitation | NANOSCALE, v.9, no.32, pp.11584 - 11589 | - |
dc.citation.title | NANOSCALE | - |
dc.citation.volume | 9 | - |
dc.citation.number | 32 | - |
dc.citation.startPage | 11584 | - |
dc.citation.endPage | 11589 | - |
dc.date.scptcdate | 2018-10-01 | - |
dc.description.wostc | 5 | - |
dc.description.scptc | 7 | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordPlus | TOTAL-ENERGY CALCULATIONS | - |
dc.subject.keywordPlus | WAVE BASIS-SET | - |
dc.subject.keywordPlus | EPITAXIAL GRAPHENE | - |
dc.subject.keywordPlus | HIGH-QUALITY | - |
dc.subject.keywordPlus | STABILITY | - |
dc.subject.keywordPlus | FILMS | - |
dc.subject.keywordPlus | 1ST-PRINCIPLES | - |
dc.subject.keywordPlus | MONOLAYER | - |
dc.subject.keywordPlus | DYNAMICS | - |
dc.subject.keywordPlus | KINETICS | - |