Atomic-scale sensing of the magnetic dipolar field from single atoms.
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Taeyoung Choi | - |
dc.contributor.author | William Paul | - |
dc.contributor.author | Steffen Rolf-Pissarczyk | - |
dc.contributor.author | Andrew J. Macdonald | - |
dc.contributor.author | Fabian D. Natterer | - |
dc.contributor.author | Kai Yang | - |
dc.contributor.author | Philip Willke | - |
dc.contributor.author | Christopher P. Lutz | - |
dc.contributor.author | Andreas, Heinrich | - |
dc.date.available | 2017-09-05T05:14:17Z | - |
dc.date.created | 2017-07-06 | - |
dc.date.issued | 2017-05 | - |
dc.identifier.issn | 1748-3387 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/3709 | - |
dc.description.abstract | Spin resonance provides the high-energy resolution needed to determine biological and material structures by sensing weak magnetic interactions1. In recent years, there have been notable achievements in detecting2 and coherently controlling3, 4, 5, 6, 7 individual atomic-scale spin centres for sensitive local magnetometry8, 9, 10. However, positioning the spin sensor and characterizing spin–spin interactions with sub-nanometre precision have remained outstanding challenges11, 12. Here, we use individual Fe atoms as an electron spin resonance (ESR) sensor in a scanning tunnelling microscope to measure the magnetic field emanating from nearby spins with atomic-scale precision. On artificially built assemblies of magnetic atoms (Fe and Co) on a magnesium oxide surface, we measure that the interaction energy between the ESR sensor and an adatom shows an inverse-cube distance dependence (r−3.01±0.04). This demonstrates that the atoms are predominantly coupled by the magnetic dipole–dipole interaction, which, according to our observations, dominates for atom separations greater than 1 nm. This dipolar sensor can determine the magnetic moments of individual adatoms with high accuracy. The achieved atomic-scale spatial resolution in remote sensing of spins may ultimately allow the structural imaging of individual magnetic molecules, nanostructures and spin-labelled biomolecules. © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | NATURE PUBLISHING GROUP | - |
dc.subject | ELECTRON SPIN | - |
dc.subject | RESONANCE | - |
dc.subject | NANOSCALE | - |
dc.subject | SPECTROSCOPY | - |
dc.subject | ANISOTROPY | - |
dc.subject | SURFACE | - |
dc.title | Atomic-scale sensing of the magnetic dipolar field from single atoms. | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000400650200008 | - |
dc.identifier.scopusid | 2-s2.0-85014530507 | - |
dc.identifier.rimsid | 59738 | ko |
dc.date.tcdate | 2018-10-01 | - |
dc.contributor.affiliatedAuthor | Taeyoung Choi | - |
dc.contributor.affiliatedAuthor | Andreas, Heinrich | - |
dc.identifier.doi | 10.1038/NNANO.2017.18 | - |
dc.identifier.bibliographicCitation | NATURE NANOTECHNOLOGY, v.12, no.5, pp.420 - 424 | - |
dc.citation.title | NATURE NANOTECHNOLOGY | - |
dc.citation.volume | 12 | - |
dc.citation.number | 5 | - |
dc.citation.startPage | 420 | - |
dc.citation.endPage | 424 | - |
dc.date.scptcdate | 2018-10-01 | - |
dc.description.wostc | 14 | - |
dc.description.scptc | 16 | - |
dc.embargo.liftdate | 9999-12-31 | - |
dc.embargo.terms | 9999-12-31 | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |