Tracking reaction dynamics in solution by pump-probe X-ray absorption spectroscopy and X-ray liquidography (solution scattering)
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kim, Jeongho | - |
dc.contributor.author | Kyung Hwan Kim | - |
dc.contributor.author | Key Young Oang | - |
dc.contributor.author | Lee, Jae Hyuk | - |
dc.contributor.author | Hong, Kiryong | - |
dc.contributor.author | Cho, Hana | - |
dc.contributor.author | Huse, Nils | - |
dc.contributor.author | Schoenlein, Robert W. | - |
dc.contributor.author | Kim, Tae Kyu | - |
dc.contributor.author | Hyotcherl Ihee | - |
dc.date.available | 2017-05-19T01:13:57Z | - |
dc.date.created | 2017-04-20 | - |
dc.date.issued | 2016-01 | - |
dc.identifier.issn | 1359-7345 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/3516 | - |
dc.description.abstract | Characterization of transient molecular structures formed during chemical and biological processes is essential for understanding their mechanisms and functions. Over the last decade, time-resolved X-ray liquidography (TRXL) and time-resolved X-ray absorption spectroscopy (TRXAS) have emerged as powerful techniques for molecular and electronic structural analysis of photoinduced reactions in the solution phase. Both techniques make use of a pump–probe scheme that consists of (1) an optical pump pulse to initiate a photoinduced process and (2) an X-ray probe pulse to monitor changes in the molecular structure as a function of time delay between pump and probe pulses. TRXL is sensitive to changes in the global molecular structure and therefore can be used to elucidate structural changes of reacting solute molecules as well as the collective response of solvent molecules. On the other hand, TRXAS can be used to probe changes in both local geometrical and electronic structures of specific X-ray-absorbing atoms due to the element-specific nature of core-level transitions. These techniques are complementary to each other and a combination of the two methods will enhance the capability of accurately obtaining structural changes induced by photoexcitation. Here we review the principles of TRXL and TRXAS and present recent application examples of the two methods for studying chemical and biological processes in solution. Furthermore, we briefly discuss the prospect of using X-ray free electron lasers for the two techniques, which will allow us to keep track of structural dynamics on femtosecond time scales in various solution-phase molecular reactions. ©The Royal Society of Chemistry 2016 | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | ROYAL SOC CHEMISTRY | - |
dc.title | Tracking reaction dynamics in solution by pump-probe X-ray absorption spectroscopy and X-ray liquidography (solution scattering) | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000371477100001 | - |
dc.identifier.scopusid | 2-s2.0-84961230919 | - |
dc.identifier.rimsid | 59345 | ko |
dc.date.tcdate | 2018-10-01 | - |
dc.contributor.affiliatedAuthor | Kyung Hwan Kim | - |
dc.contributor.affiliatedAuthor | Key Young Oang | - |
dc.contributor.affiliatedAuthor | Hyotcherl Ihee | - |
dc.identifier.doi | 10.1039/c5cc08949b | - |
dc.identifier.bibliographicCitation | CHEMICAL COMMUNICATIONS, v.52, no.19, pp.3734 - 3749 | - |
dc.citation.title | CHEMICAL COMMUNICATIONS | - |
dc.citation.volume | 52 | - |
dc.citation.number | 19 | - |
dc.citation.startPage | 3734 | - |
dc.citation.endPage | 3749 | - |
dc.date.scptcdate | 2018-10-01 | - |
dc.description.wostc | 9 | - |
dc.description.scptc | 10 | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordPlus | ULTRAFAST ELECTRON-DIFFRACTION | - |
dc.subject.keywordPlus | TRANSIENT MOLECULAR-STRUCTURES | - |
dc.subject.keywordPlus | PROTEIN STRUCTURAL DYNAMICS | - |
dc.subject.keywordPlus | PHOTOACTIVE YELLOW PROTEIN | - |
dc.subject.keywordPlus | TIME-RESOLVED DIFFRACTION | - |
dc.subject.keywordPlus | 2-DIMENSIONAL INFRARED-SPECTROSCOPY | - |
dc.subject.keywordPlus | FEMTOSECOND-STIMULATED RAMAN | - |
dc.subject.keywordPlus | CU(I) PHENANTHROLINE COMPLEX | - |
dc.subject.keywordPlus | SPIN-CROSSOVER DYNAMICS | - |
dc.subject.keywordPlus | EXCITED-STATE STRUCTURE | - |