Toward biomaterial-based implantable photonic devices
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Matjaž Humar | - |
dc.contributor.author | Sheldon J. J. Kwok | - |
dc.contributor.author | Myunghwan Choi | - |
dc.contributor.author | Ali K. Yetisen | - |
dc.contributor.author | Sangyeon Cho | - |
dc.contributor.author | Seok-Hyun Yun | - |
dc.date.available | 2017-03-13T05:16:15Z | - |
dc.date.created | 2016-06-23 | ko |
dc.date.issued | 2017-03 | - |
dc.identifier.issn | 2192-8606 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/3369 | - |
dc.description.abstract | Optical technologies are essential for the rapid and efficient delivery of health care to patients. Efforts have begun to implement these technologies in miniature devices that are implantable in patients for continuous or chronic uses. In this review, we discuss guidelines for biomaterials suitable for use in vivo. Basic optical functions such as focusing, reflection, and diffraction have been realized with biopolymers. Biocompatible optical fibers can deliver sensing or therapeutic-inducing light into tissues and enable optical communications with implanted photonic devices. Wirelessly powered, light-emitting diodes (LEDs) and miniature lasers made of biocompatible materialsmay offer new approaches in optical sensing and therapy. Advances in biotechnologies, such as optogenetics, enable more sophisticated photonic devices with a high level of integration with neurological or physiological circuits. With further innovations and translational development, implantable photonic devices offer a pathway to improve health monitoring, diagnostics, and light-activated therapies. © 2016 Matjaž Humar et al., published by De Gruyter Open. | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | WALTER DE GRUYTER GMBH | - |
dc.subject | biomaterials, biocompatible, biodegradable, optics, photonics | - |
dc.title | Toward biomaterial-based implantable photonic devices | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000399283100003 | - |
dc.identifier.scopusid | 2-s2.0-85012247046 | - |
dc.identifier.rimsid | 55958 | ko |
dc.date.tcdate | 2018-10-01 | - |
dc.contributor.affiliatedAuthor | Myunghwan Choi | - |
dc.identifier.doi | 10.1515/nanoph-2016-0003 | - |
dc.identifier.bibliographicCitation | NANOPHOTONICS, v.6, no.2, pp.414 - 434 | - |
dc.citation.title | NANOPHOTONICS | - |
dc.citation.volume | 6 | - |
dc.citation.number | 2 | - |
dc.citation.startPage | 414 | - |
dc.citation.endPage | 434 | - |
dc.date.scptcdate | 2018-10-01 | - |
dc.description.wostc | 16 | - |
dc.description.scptc | 10 | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordPlus | OPTICAL WAVE-GUIDES | - |
dc.subject.keywordPlus | LIGHT-EMITTING DEVICES | - |
dc.subject.keywordPlus | FOREIGN-BODY REACTION | - |
dc.subject.keywordPlus | CRYSTALLINE COLLOIDAL ARRAYS | - |
dc.subject.keywordPlus | SILK FIBROIN FILMS | - |
dc.subject.keywordPlus | IN-VIVO | - |
dc.subject.keywordPlus | PHOTODYNAMIC THERAPY | - |
dc.subject.keywordPlus | FLUORESCENT PROTEIN | - |
dc.subject.keywordPlus | PLASMONIC NANOSTRUCTURES | - |
dc.subject.keywordPlus | BIOMEDICAL APPLICATIONS | - |
dc.subject.keywordAuthor | biomaterials | - |
dc.subject.keywordAuthor | biocompatible | - |
dc.subject.keywordAuthor | biodegradable | - |
dc.subject.keywordAuthor | optics | - |
dc.subject.keywordAuthor | photonics | - |