Hydrogenase Enzymes and Their Synthetic Models: The Role of Metal HydridesHighly Cited Paper
DC Field | Value | Language |
---|---|---|
dc.contributor.author | David Schilter | - |
dc.contributor.author | James M. Camara | - |
dc.contributor.author | Mioy T. Huynh | - |
dc.contributor.author | Sharon Hammes-Schiffer | - |
dc.contributor.author | Thomas B. Rauchfuss | - |
dc.date.available | 2016-11-29T08:18:54Z | - |
dc.date.created | 2016-09-20 | - |
dc.date.issued | 2016-08 | - |
dc.identifier.issn | 0009-2665 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/2993 | - |
dc.description.abstract | Hydrogenase enzymes efficiently process H-2 and protons at organometallic FeFe, NiFe, or Fe active sites. Synthetic modeling of the many H(2)ase states has provided insight into H(2)ase structure and mechanism, as well as afforded catalysts for the H-2 energy vector. Particularly important are hydride-bearing states, with synthetic hydride analogues now known for each hydrogenase class. These hydrides are typically prepared by protonation of low-valent cores. Examples of FeFe and NiFe hydrides derived from H-2 have also been prepared. Such chemistry is more developed than mimicry of the redox-inactive monoFe enzyme, although functional models of the latter are now emerging. Advances in physical and theoretical characterization of H(2)ase enzymes and synthetic models have proven key to the study of hydrides in particular, and will guide modeling efforts toward more robust and active species optimized for practical applications. © 2016 American Chemical Society | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | AMER CHEMICAL SOC | - |
dc.title | Hydrogenase Enzymes and Their Synthetic Models: The Role of Metal Hydrides | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000381332000010 | - |
dc.identifier.scopusid | 2-s2.0-84981510484 | - |
dc.identifier.rimsid | 56399 | - |
dc.date.tcdate | 2018-10-01 | - |
dc.contributor.affiliatedAuthor | David Schilter | - |
dc.identifier.doi | 10.1021/acs.chemrev.6b00180 | - |
dc.identifier.bibliographicCitation | CHEMICAL REVIEWS, v.116, no.15, pp.8693 - 8749 | - |
dc.citation.title | CHEMICAL REVIEWS | - |
dc.citation.volume | 116 | - |
dc.citation.number | 15 | - |
dc.citation.startPage | 8693 | - |
dc.citation.endPage | 8749 | - |
dc.date.scptcdate | 2018-10-01 | - |
dc.description.wostc | 111 | - |
dc.description.scptc | 113 | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordPlus | DENSITY-FUNCTIONAL THEORY | - |
dc.subject.keywordPlus | ACTIVE-SITE MODELS | - |
dc.subject.keywordPlus | COUPLED ELECTRON-TRANSFER | - |
dc.subject.keywordPlus | NICKEL-IRON HYDROGENASE | - |
dc.subject.keywordPlus | FE-ONLY HYDROGENASE | - |
dc.subject.keywordPlus | CLUSTER-FREE HYDROGENASE | - |
dc.subject.keywordPlus | RESONANCE VIBRATIONAL SPECTROSCOPY | - |
dc.subject.keywordPlus | 2ND COORDINATION SPHERE | - |
dc.subject.keywordPlus | VULGARIS MIYAZAKI-F | - |
dc.subject.keywordPlus | ELECTROCATALYTIC PROTON REDUCTION | - |