Quasiperiodic driving of Anderson localized waves in one dimension

DC Field Value Language
dc.contributor.authorH. Hatami-
dc.contributor.authorC. Danieli-
dc.contributor.authorJ.D. Bodyfelt-
dc.contributor.authorSergej Flach-
dc.date.available2016-06-13T09:07:20Z-
dc.date.created2016-06-13-
dc.date.issued2016-06-
dc.identifier.issn2470-0045-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/2514-
dc.description.abstractWe consider a quantum particle in a one-dimensional disordered lattice with Anderson localization in the presence of multifrequency perturbations of the onsite energies. Using the Floquet representation, we transform the eigenvalue problem into a Wannier-Stark basis. Each frequency component contributes either to a single channel or a multichannel connectivity along the lattice, depending on the control parameters. The single-channel regime is essentially equivalent to the undriven case. The multichannel driving increases substantially the localization length for slow driving, showing two different scaling regimes of weak and strong driving, yet the localization length stays finite for a finite number of frequency components. ©2016 American Physical Society-
dc.languageENG-
dc.publisherAMER PHYSICAL SOC-
dc.titleQuasiperiodic driving of Anderson localized waves in one dimension-
dc.typeArticle-
dc.type.rimsA-
dc.identifier.wosid000377508200004-
dc.identifier.scopusid2-s2.0-84975229274-
dc.description.wostc3-
dc.date.tcdate2018-10-01-
dc.date.scptcdate2018-10-01-
dc.contributor.affiliatedAuthorH. Hatami-
dc.contributor.affiliatedAuthorSergej Flach-
dc.identifier.bibliographicCitationPHYSICAL REVIEW E, v.93, no.6, pp.062205 --
dc.description.scptc3-
Appears in Collections:
Center for Theoretical Physics of Complex Systems(복잡계 이론물리 연구단) > Journal Papers (저널논문)
Files in This Item:
PRE_93_062205_2016.pdfDownload

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse