Time-dependent density functional theory of high-intensity short-pulse laser irradiation on insulators
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Sato, SA | - |
dc.contributor.author | Yabana, K | - |
dc.contributor.author | Shinohara, Y | - |
dc.contributor.author | Otobe, T | - |
dc.contributor.author | Kyung Min Lee | - |
dc.contributor.author | Bertsch, GF | - |
dc.date.available | 2016-01-07T09:10:05Z | - |
dc.date.created | 2015-12-21 | ko |
dc.date.issued | 2015-11 | - |
dc.identifier.issn | 2469-9950 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/1837 | - |
dc.description.abstract | We calculate the energy deposition by very short laser pulses in SiO2 (alpha-quartz) with a view to establishing systematics for predicting damage and nanoparticle production. The theoretical framework is time-dependent density functional theory, implemented by the real-time method in a multiscale representation. For the most realistic simulations we employ a meta-GGA Kohn-Sham potential similar to that of Becke and Johnson. We find that the deposited energy in the medium can be accurately modeled as a function of the local electromagnetic pulse fluence. The energy-deposition function can in turn be quite well fitted to the strong-field Keldysh formula for a range of intensities from below the melting threshold to well beyond the ablation threshold. We find reasonable agreement between the damage threshold and the energy required to melt the substrate. Also, the depth of the ablated crater at higher energies is fairly well reproduced assuming that the material ablated with the energy exceeds that required to convert it to an atomic fluid. However, the calculated ablation threshold is higher than experiment, suggesting a nonthermal mechanism for the surface ablation | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | AMER PHYSICAL SOC | - |
dc.title | Time-dependent density functional theory of high-intensity short-pulse laser irradiation on insulators | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000364472300005 | - |
dc.identifier.scopusid | 2-s2.0-84949665209 | - |
dc.identifier.rimsid | 21685 | ko |
dc.date.tcdate | 2018-10-01 | - |
dc.contributor.affiliatedAuthor | Kyung Min Lee | - |
dc.identifier.doi | 10.1103/PhysRevB.92.205413 | - |
dc.identifier.bibliographicCitation | PHYSICAL REVIEW B, v.92, no.20, pp.205413 | - |
dc.citation.title | PHYSICAL REVIEW B | - |
dc.citation.volume | 92 | - |
dc.citation.number | 20 | - |
dc.citation.startPage | 205413 | - |
dc.date.scptcdate | 2018-10-01 | - |
dc.description.wostc | 13 | - |
dc.description.scptc | 14 | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordPlus | TRANSPARENT MATERIALS | - |
dc.subject.keywordPlus | FEMTOSECOND | - |
dc.subject.keywordPlus | DIELECTRICS | - |
dc.subject.keywordPlus | ABLATION | - |
dc.subject.keywordPlus | BREAKDOWN | - |
dc.subject.keywordPlus | DYNAMICS | - |
dc.subject.keywordPlus | SOLIDS | - |
dc.subject.keywordPlus | FIELD | - |
dc.subject.keywordPlus | GOLD | - |