RFMiD: Retinal Image Analysis for multi-Disease Detection challenge
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Pachade, Samiksha | - |
dc.contributor.author | Porwal, Prasanna | - |
dc.contributor.author | Kokare, Manesh | - |
dc.contributor.author | Deshmukh, Girish | - |
dc.contributor.author | Sahasrabuddhe, Vivek | - |
dc.contributor.author | Luo, Zhengbo | - |
dc.contributor.author | Han, Feng | - |
dc.contributor.author | Sun, Zitang | - |
dc.contributor.author | Qihan, Li | - |
dc.contributor.author | Kamata, Sei-ichiro | - |
dc.contributor.author | Ho, Edward | - |
dc.contributor.author | Wang, Edward | - |
dc.contributor.author | Sivajohan, Asaanth | - |
dc.contributor.author | Youn, Saerom | - |
dc.contributor.author | Lane, Kevin | - |
dc.contributor.author | Chun, Jin | - |
dc.contributor.author | Wang, Xinliang | - |
dc.contributor.author | Gu, Yunchao | - |
dc.contributor.author | Lu, Sixu | - |
dc.contributor.author | Oh, Young-tack | - |
dc.contributor.author | Hyunjin Park | - |
dc.contributor.author | Lee, Chia-Yen | - |
dc.contributor.author | Yeh, Hung | - |
dc.contributor.author | Cheng, Kai-Wen | - |
dc.contributor.author | Wang, Haoyu | - |
dc.contributor.author | Ye, Jin | - |
dc.contributor.author | He, Junjun | - |
dc.contributor.author | Gu, Lixu | - |
dc.contributor.author | Müller, Dominik | - |
dc.contributor.author | Soto-Rey, Iñaki | - |
dc.contributor.author | Kramer, Frank | - |
dc.contributor.author | Arai, Hidehisa | - |
dc.contributor.author | Ochi, Yuma | - |
dc.contributor.author | Okada, Takami | - |
dc.contributor.author | Giancardo, Luca | - |
dc.contributor.author | Quellec, Gwenolé | - |
dc.contributor.author | Mériaudeau, Fabrice | - |
dc.date.accessioned | 2025-01-21T06:00:10Z | - |
dc.date.available | 2025-01-21T06:00:10Z | - |
dc.date.created | 2024-10-21 | - |
dc.date.issued | 2025-01 | - |
dc.identifier.issn | 1361-8415 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/16221 | - |
dc.description.abstract | In the last decades, many publicly available large fundus image datasets have been collected for diabetic retinopathy, glaucoma, and age-related macular degeneration, and a few other frequent pathologies. These publicly available datasets were used to develop a computer-aided disease diagnosis system by training deep learning models to detect these frequent pathologies. One challenge limiting the adoption of a such system by the ophthalmologist is, computer-aided disease diagnosis system ignores sight-threatening rare pathologies such as central retinal artery occlusion or anterior ischemic optic neuropathy and others that ophthalmologists currently detect. Aiming to advance the state-of-the-art in automatic ocular disease classification of frequent diseases along with the rare pathologies, a grand challenge on “Retinal Image Analysis for multi-Disease Detection” was organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI - 2021). This paper, reports the challenge organization, dataset, top-performing participants solutions, evaluation measures, and results based on a new “Retinal Fundus Multi-disease Image Dataset” (RFMiD). There were two principal sub-challenges: disease screening (i.e. presence versus absence of pathology — a binary classification problem) and disease/pathology classification (a 28-class multi-label classification problem). It received a positive response from the scientific community with 74 submissions by individuals/teams that effectively entered in this challenge. The top-performing methodologies utilized a blend of data-preprocessing, data augmentation, pre-trained model, and model ensembling. This multi-disease (frequent and rare pathologies) detection will enable the development of generalizable models for screening the retina, unlike the previous efforts that focused on the detection of specific diseases. © 2024 Elsevier B.V. | - |
dc.language | 영어 | - |
dc.publisher | Elsevier BV | - |
dc.title | RFMiD: Retinal Image Analysis for multi-Disease Detection challenge | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 001342403200001 | - |
dc.identifier.scopusid | 2-s2.0-85205980966 | - |
dc.identifier.rimsid | 84282 | - |
dc.contributor.affiliatedAuthor | Hyunjin Park | - |
dc.identifier.doi | 10.1016/j.media.2024.103365 | - |
dc.identifier.bibliographicCitation | Medical Image Analysis, v.99 | - |
dc.relation.isPartOf | Medical Image Analysis | - |
dc.citation.title | Medical Image Analysis | - |
dc.citation.volume | 99 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalWebOfScienceCategory | Computer Science, Artificial Intelligence | - |
dc.relation.journalWebOfScienceCategory | Computer Science, Interdisciplinary Applications | - |
dc.relation.journalWebOfScienceCategory | Engineering, Biomedical | - |
dc.relation.journalWebOfScienceCategory | Radiology, Nuclear Medicine & Medical Imaging | - |
dc.subject.keywordPlus | COMPUTER-AIDED DIAGNOSIS | - |
dc.subject.keywordPlus | DIABETIC-RETINOPATHY | - |
dc.subject.keywordPlus | MACULAR DEGENERATION | - |
dc.subject.keywordPlus | BLOOD-VESSELS | - |
dc.subject.keywordPlus | SEGMENTATION | - |
dc.subject.keywordPlus | VALIDATION | - |
dc.subject.keywordPlus | SYSTEM | - |
dc.subject.keywordAuthor | Classification | - |
dc.subject.keywordAuthor | Multi-label classification | - |
dc.subject.keywordAuthor | Ocular disease | - |
dc.subject.keywordAuthor | Rare pathology detection | - |
dc.subject.keywordAuthor | Retinal fundus images | - |