An Analysis Method of Heat and Light Detection with Scintillating Crystals
DC Field | Value | Language |
---|---|---|
dc.contributor.author | H. S. Lim | - |
dc.contributor.author | J. S. Chung | - |
dc.contributor.author | Jo, H. S. | - |
dc.contributor.author | H. B. Kim | - |
dc.contributor.author | H. L. Kim | - |
dc.contributor.author | Y. H. Kim | - |
dc.contributor.author | W. T. Kim | - |
dc.contributor.author | D. H. Kwon | - |
dc.contributor.author | D. Y. Lee | - |
dc.contributor.author | Y. C. Lee | - |
dc.contributor.author | K. R. Woo | - |
dc.date.accessioned | 2024-12-30T06:00:11Z | - |
dc.date.available | 2024-12-30T06:00:11Z | - |
dc.date.created | 2024-08-05 | - |
dc.date.issued | 2024-11 | - |
dc.identifier.issn | 0022-2291 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/16023 | - |
dc.description.abstract | We present an analysis method for determining signal amplitudes using a least squares method in combination with an optimally selected bandpass filter. This method has been developed to process heat and light signals obtained in the AMoRE-I experiment. We apply Butterworth filters with various combinations of passbands and filter orders to both the heat and light signals. Subsequently, we employ the least squares method to calculate signal amplitudes by comparing each signal template for the heat and light channels. Optimal filter conditions are identified to achieve the best resolution value. In this paper, we provide a detailed description of the signal processing approach, comparing it with the optimal filter method. | - |
dc.language | 영어 | - |
dc.publisher | Kluwer Academic/Plenum Publishers | - |
dc.title | An Analysis Method of Heat and Light Detection with Scintillating Crystals | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 001276946600001 | - |
dc.identifier.scopusid | 2-s2.0-85199604466 | - |
dc.identifier.rimsid | 83777 | - |
dc.contributor.affiliatedAuthor | H. S. Lim | - |
dc.contributor.affiliatedAuthor | J. S. Chung | - |
dc.contributor.affiliatedAuthor | H. B. Kim | - |
dc.contributor.affiliatedAuthor | H. L. Kim | - |
dc.contributor.affiliatedAuthor | Y. H. Kim | - |
dc.contributor.affiliatedAuthor | W. T. Kim | - |
dc.contributor.affiliatedAuthor | D. H. Kwon | - |
dc.contributor.affiliatedAuthor | D. Y. Lee | - |
dc.contributor.affiliatedAuthor | Y. C. Lee | - |
dc.contributor.affiliatedAuthor | K. R. Woo | - |
dc.identifier.doi | 10.1007/s10909-024-03191-1 | - |
dc.identifier.bibliographicCitation | Journal of Low Temperature Physics, v.217, pp.374 - 382 | - |
dc.relation.isPartOf | Journal of Low Temperature Physics | - |
dc.citation.title | Journal of Low Temperature Physics | - |
dc.citation.volume | 217 | - |
dc.citation.startPage | 374 | - |
dc.citation.endPage | 382 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalWebOfScienceCategory | Physics, Applied | - |
dc.relation.journalWebOfScienceCategory | Physics, Condensed Matter | - |
dc.subject.keywordPlus | CALORIMETERS | - |
dc.subject.keywordAuthor | Signal processing | - |
dc.subject.keywordAuthor | Optimal filter method | - |
dc.subject.keywordAuthor | Least squares method | - |
dc.subject.keywordAuthor | Neutrinoless double beta decay | - |
dc.subject.keywordAuthor | Butterworth filter | - |
dc.subject.keywordAuthor | Thermal calorimeter | - |