Low-temperature crystallization of BeO-assisted polycrystalline germanium layer for monolithic 3D integration
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Bong, Haekyun | - |
dc.contributor.author | Jang, Yoonseo | - |
dc.contributor.author | Jung, Dohwan | - |
dc.contributor.author | Cho, Youngho | - |
dc.contributor.author | Choi, Woong | - |
dc.contributor.author | Ahn, Donghwan | - |
dc.contributor.author | Prakash R. Sultane | - |
dc.contributor.author | Christopher W. Bielawski | - |
dc.contributor.author | Oh, Jungwoo | - |
dc.date.accessioned | 2024-12-12T07:06:16Z | - |
dc.date.available | 2024-12-12T07:06:16Z | - |
dc.date.created | 2024-07-22 | - |
dc.date.issued | 2024-10 | - |
dc.identifier.issn | 0169-4332 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/15619 | - |
dc.description.abstract | We demonstrated a new method for the low-temperature solid-phase crystallization (SPC) of germanium on beryllium oxide (BeO) films for monolithic 3D (M3D) integration. Using a wurtzite crystal BeO film, known for its high thermal conductivity of 370 W/m-k at 300 K and covalent bonding characteristics, as the underlying layer, we crystallized Ge at a reduced temperature of 410 °C. For the Ge-on-BeO, the formation of larger grains was consistently promoted at annealing temperatures of 410–500 °C, with a notable 125 % increase in the grain size at 500 °C compared to that at the SiO2 underlayer. The polycrystalline Ge layers crystallized on the BeO retained their tensile strain, as confirmed by the Raman spectra. Furthermore, its optical bandgap of ∼ 1.36 eV and average roughness of 0.847 nm at an annealing temperature of 450 °C make it more suitable for an M3D upper channel layer than Ge-on-SiO2. A comprehensive experimental analysis confirmed the enhanced crystallinity, stability, and channel properties of poly-Ge layers crystallized on BeO. Hence, this study developed a new method for the low-temperature SPC process and highlighted the potential of BeO as a crystallization-assistance thermal-management material for next-generation 3D integrated technology. © 2024 Elsevier B.V. | - |
dc.language | 영어 | - |
dc.publisher | Elsevier BV | - |
dc.title | Low-temperature crystallization of BeO-assisted polycrystalline germanium layer for monolithic 3D integration | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 001273561600001 | - |
dc.identifier.scopusid | 2-s2.0-85198520188 | - |
dc.identifier.rimsid | 83638 | - |
dc.contributor.affiliatedAuthor | Prakash R. Sultane | - |
dc.contributor.affiliatedAuthor | Christopher W. Bielawski | - |
dc.identifier.doi | 10.1016/j.apsusc.2024.160723 | - |
dc.identifier.bibliographicCitation | Applied Surface Science, v.671 | - |
dc.relation.isPartOf | Applied Surface Science | - |
dc.citation.title | Applied Surface Science | - |
dc.citation.volume | 671 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Coatings & Films | - |
dc.relation.journalWebOfScienceCategory | Physics, Applied | - |
dc.relation.journalWebOfScienceCategory | Physics, Condensed Matter | - |
dc.subject.keywordAuthor | Monolithic 3D integration | - |
dc.subject.keywordAuthor | Germanium | - |
dc.subject.keywordAuthor | Low temperature process | - |
dc.subject.keywordAuthor | Solid-phase crystallization | - |
dc.subject.keywordAuthor | Beryllium oxide | - |
dc.subject.keywordAuthor | Crystalline oxide | - |