BROWSE

ITEM VIEW & DOWNLOAD

Attojoule Hexagonal Boron Nitride-Based Memristor for High-Performance Neuromorphic Computing

DC Field Value Language
dc.contributor.authorKim, Jiye-
dc.contributor.authorSong, Jaesub-
dc.contributor.authorKwak, Hyunjoung-
dc.contributor.authorChang-Won Choi-
dc.contributor.authorNoh, Kyungmi-
dc.contributor.authorMoon, Seokho-
dc.contributor.authorHwang, Hyeonwoong-
dc.contributor.authorHwang, Inyong-
dc.contributor.authorJeong, Hokyeong-
dc.contributor.authorSi-Young Choi-
dc.contributor.authorKim, Seyoung-
dc.contributor.authorKim, Jong Kyu-
dc.date.accessioned2024-12-12T07:03:19Z-
dc.date.available2024-12-12T07:03:19Z-
dc.date.created2024-07-15-
dc.date.issued2024-11-
dc.identifier.issn1613-6810-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/15586-
dc.description.abstractIn next-generation neuromorphic computing applications, the primary challenge lies in achieving energy-efficient and reliable memristors while minimizing their energy consumption to a level comparable to that of biological synapses. In this work, hexagonal boron nitride (h-BN)-based metal-insulator-semiconductor (MIS) memristors operating is presented at the attojoule-level tailored for high-performance artificial neural networks. The memristors benefit from a wafer-scale uniform h-BN resistive switching medium grown directly on a highly doped Si wafer using metal-organic chemical vapor deposition (MOCVD), resulting in outstanding reliability and low variability. Notably, the h-BN-based memristors exhibit exceptionally low energy consumption of attojoule levels, coupled with fast switching speed. The switching mechanisms are systematically substantiated by electrical and nano-structural analysis, confirming that the h-BN layer facilitates the resistive switching with extremely low high resistance states (HRS) and the native SiOx on Si contributes to suppressing excessive current, enabling attojoule-level energy consumption. Furthermore, the formation of atomic-scale conductive filaments leads to remarkably fast response times within the nanosecond range, and allows for the attainment of multi-resistance states, making these memristors well-suited for next-generation neuromorphic applications. The h-BN-based MIS memristors hold the potential to revolutionize energy consumption limitations in neuromorphic devices, bridging the gap between artificial and biological synapses. This article presents wafer-scale hexagonal boron nitride (h-BN)-based memristors with metal-insulator-semiconductor (MIS) configuration, operating at the attojoule level. These h-BN-based memristors are the first to demonstrate multi-states in response to nanosecond stimuli among existing 2D materials-based memristors. The h-BN-based memristors have the potential to revolutionize the current challenges in neuromorphic applications, bridging the energy efficiency gap between artificial and biological synapses. image-
dc.language영어-
dc.publisherWiley - V C H Verlag GmbbH & Co.-
dc.titleAttojoule Hexagonal Boron Nitride-Based Memristor for High-Performance Neuromorphic Computing-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid001258516100001-
dc.identifier.scopusid2-s2.0-85197466307-
dc.identifier.rimsid83524-
dc.contributor.affiliatedAuthorChang-Won Choi-
dc.contributor.affiliatedAuthorSi-Young Choi-
dc.identifier.doi10.1002/smll.202403737-
dc.identifier.bibliographicCitationSmall, v.20, no.45-
dc.relation.isPartOfSmall-
dc.citation.titleSmall-
dc.citation.volume20-
dc.citation.number45-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.subject.keywordPlusWAFER-SCALE-
dc.subject.keywordPlusMEMORY-
dc.subject.keywordPlusCONDUCTANCE-
dc.subject.keywordPlusRRAM-
dc.subject.keywordPlusGRAPHENE-
dc.subject.keywordPlusBARRIER-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordPlusCROSSBAR ARRAYS-
dc.subject.keywordAuthormetal-organic chemical vapor deposition-
dc.subject.keywordAuthorneuromorphic application-
dc.subject.keywordAuthorattojoule energy consumption-
dc.subject.keywordAuthorhexagonal boron nitride-
dc.subject.keywordAuthormemristor-
Appears in Collections:
Center for Van der Waals Quantum Solids(반데르발스 양자 물질 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse