Stable selenium nickel-iron electrocatalyst for oxygen evolution reaction in alkaline and natural seawater
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Wang, Jue | - |
dc.contributor.author | Li, Zhi | - |
dc.contributor.author | Feng, Libei | - |
dc.contributor.author | Lu, Dachun | - |
dc.contributor.author | Fang, Wei | - |
dc.contributor.author | Zhang, Qinfang | - |
dc.contributor.author | Daniel Hedman | - |
dc.contributor.author | Tong, Shengfu | - |
dc.date.accessioned | 2024-12-12T07:00:32Z | - |
dc.date.available | 2024-12-12T07:00:32Z | - |
dc.date.created | 2024-09-02 | - |
dc.date.issued | 2025-01 | - |
dc.identifier.issn | 0021-9797 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/15545 | - |
dc.description.abstract | The development of efficient and stable catalysts for oxygen evolution reaction (OER) in seawater presents a major challenge for hydrogen production through water electrolysis. In this work, we present a stable NiFe foam catalyst with a Se-doped Ni/Fe oxide surface prepared through a combination of chemical vapor deposition and electrochemical exfoliation. This method effectively modifies the surface of the commercial NiFe foam to a rough and stable Se-doped Ni/Fe oxide surface, displaying exceptional OER performance in both freshwater and seawater with more than 54 days stability in natural seawater. Characterizations reveal Ni-Se doped Fe oxide surface, with subsurface layers consisting of Ni alloyed with a moderate concentration of Fe, optimizes the adsorption free energy of oxygen-containing intermediates. Our results demonstrate a surface engineering approach to activate NiFe foam as a robust OER catalyst for seawater electrolysis, which is beneficial for the hydrogen economy and for the environment. © 2024 Elsevier Inc. | - |
dc.language | 영어 | - |
dc.publisher | Academic Press | - |
dc.title | Stable selenium nickel-iron electrocatalyst for oxygen evolution reaction in alkaline and natural seawater | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 001300633900001 | - |
dc.identifier.scopusid | 2-s2.0-85201705490 | - |
dc.identifier.rimsid | 83920 | - |
dc.contributor.affiliatedAuthor | Daniel Hedman | - |
dc.identifier.doi | 10.1016/j.jcis.2024.08.097 | - |
dc.identifier.bibliographicCitation | Journal of Colloid and Interface Science, v.677, no.Part B, pp.976 - 985 | - |
dc.relation.isPartOf | Journal of Colloid and Interface Science | - |
dc.citation.title | Journal of Colloid and Interface Science | - |
dc.citation.volume | 677 | - |
dc.citation.number | Part B | - |
dc.citation.startPage | 976 | - |
dc.citation.endPage | 985 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordAuthor | Oxygen evolution reaction | - |
dc.subject.keywordAuthor | Seawater | - |
dc.subject.keywordAuthor | Chemical vapor deposition | - |
dc.subject.keywordAuthor | Electrochemical exfoliation | - |
dc.subject.keywordAuthor | NiFe foam | - |