Brain decoding of spontaneous thought: Predictive modeling of selfrelevance and valence using personal narratives
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hong Ji Kim | - |
dc.contributor.author | Byeol Kim Lux | - |
dc.contributor.author | Eunjin Lee | - |
dc.contributor.author | Finn, Emily S. | - |
dc.contributor.author | Choong- Wan Woo | - |
dc.date.accessioned | 2024-06-19T05:50:13Z | - |
dc.date.available | 2024-06-19T05:50:13Z | - |
dc.date.created | 2024-06-03 | - |
dc.date.issued | 2024-03 | - |
dc.identifier.issn | 0027-8424 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/15288 | - |
dc.description.abstract | The contents and dynamics of spontaneous thought are important factors for personality traits and mental health. However, assessing spontaneous thoughts is challenging due to their unconstrained nature, and directing participants' attention to report their thoughts may fundamentally alter them. Here, we aimed to decode two key content dimensions of spontaneous thought-self- relevance and valence-directly from brain activity. To train functional MRI-based predictive models, we used individually generated personal stories as stimuli in a story- reading task to mimic narrative - like spontaneous thoughts (n = 49). We then tested these models on multiple test datasets (total n = 199). The default mode, ventral attention, and frontoparietal networks played key roles in the predictions, with the anterior insula and midcingulate cortex contributing to self- relevance prediction and the left temporoparietal junction and dorsomedial prefrontal cortex contributing to valence prediction. Overall, this study presents brain models of internal thoughts and emotions, highlighting the potential for the brain decoding of spontaneous thought. | - |
dc.language | 영어 | - |
dc.publisher | National Academy of Sciences | - |
dc.title | Brain decoding of spontaneous thought: Predictive modeling of selfrelevance and valence using personal narratives | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 001222163200005 | - |
dc.identifier.scopusid | 2-s2.0-85194715278 | - |
dc.identifier.rimsid | 83205 | - |
dc.contributor.affiliatedAuthor | Hong Ji Kim | - |
dc.contributor.affiliatedAuthor | Byeol Kim Lux | - |
dc.contributor.affiliatedAuthor | Eunjin Lee | - |
dc.contributor.affiliatedAuthor | Choong- Wan Woo | - |
dc.identifier.doi | 10.1073/pnas.2401959121 | - |
dc.identifier.bibliographicCitation | Proceedings of the National Academy of Sciences of the United States of America, v.121, no.14 | - |
dc.relation.isPartOf | Proceedings of the National Academy of Sciences of the United States of America | - |
dc.citation.title | Proceedings of the National Academy of Sciences of the United States of America | - |
dc.citation.volume | 121 | - |
dc.citation.number | 14 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalWebOfScienceCategory | Multidisciplinary Sciences | - |
dc.subject.keywordPlus | WANDERING MIND | - |
dc.subject.keywordPlus | SELF | - |
dc.subject.keywordPlus | METAANALYSIS | - |
dc.subject.keywordPlus | SYSTEMS | - |
dc.subject.keywordPlus | FUTURE | - |
dc.subject.keywordPlus | FMRI | - |
dc.subject.keywordAuthor | functional magnetic resonance imaging | - |
dc.subject.keywordAuthor | brain decoding | - |
dc.subject.keywordAuthor | affective neuroscience | - |
dc.subject.keywordAuthor | personal story | - |
dc.subject.keywordAuthor | spontaneous thought | - |