BROWSE

Related Scientist

cnir's photo.

cnir
뇌과학이미징연구단
more info

ITEM VIEW & DOWNLOAD

Interaction Between a High-Fat Diet and Tau Pathology in Mice: Implications for Alzheimer's Disease

DC Field Value Language
dc.contributor.authorJang, Yu Jung-
dc.contributor.authorChoi, Min Gyu-
dc.contributor.authorYoo, Byung Jae-
dc.contributor.authorLee, Kyeong Jae-
dc.contributor.authorWon Beom Jung-
dc.contributor.authorSeong-Gi Kim-
dc.contributor.authorPark, Sun Ah-
dc.date.accessioned2024-03-25T22:00:35Z-
dc.date.available2024-03-25T22:00:35Z-
dc.date.created2024-01-15-
dc.date.issued2024-01-
dc.identifier.issn1387-2877-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/14959-
dc.description.abstractBACKGROUND: Obesity is a modifiable risk factor for Alzheimer's disease (AD). However, its relation with tau pathology (i.e., aberrant tau protein behavior in tauopathies such as AD) has been inconclusive. OBJECTIVE: This study investigated the interaction between a high-fat diet (HFD) and tau pathology in adult male mice. METHODS: Transgenic mice overexpressing human P301S Tau (those with the pathology) and wild-type (WT) littermates were subjected to behavioral tests, functional magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), and western blotting analysis to investigate the effects of prolonged HFD versus regular diet during adulthood. RESULTS: HFD increased body weight in both WT and P301S mice but had minimal effect on blood glucose levels. The brain response to HFD was tau genotype-specific. WT mice exhibited decreased recognition memory and enhanced network connectivity in fMRI, while P301S mice exhibited white matter tract disorganization in DTI as the sole significant finding. The reduction of insulin receptor β, insulin downstream signaling, neuronal nuclear protein, CD68-positive phagocytic activity, and myelin basic protein level were confined to the cortex of WT mice. In contrast to P301S mice, WT mice showed significant changes in the tau protein and its phosphorylation levels along with increased soluble neurofilament light levels in the hippocampus. CONCLUSIONS: HFD-induced brain dysfunction and pathological changes were blunted in mice with the pathology and more profound in healthy mice. Our findings highlight the need to consider this interaction between obesity and tau pathology when tailoring treatment strategies for AD and other tauopathies.-
dc.language영어-
dc.publisherIOS Press-
dc.titleInteraction Between a High-Fat Diet and Tau Pathology in Mice: Implications for Alzheimer's Disease-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid001167619600034-
dc.identifier.scopusid2-s2.0-85181849103-
dc.identifier.rimsid82404-
dc.contributor.affiliatedAuthorWon Beom Jung-
dc.contributor.affiliatedAuthorSeong-Gi Kim-
dc.identifier.doi10.3233/JAD-230927-
dc.identifier.bibliographicCitationJournal of Alzheimer's Disease, v.97, no.1, pp.485 - 506-
dc.relation.isPartOfJournal of Alzheimer's Disease-
dc.citation.titleJournal of Alzheimer's Disease-
dc.citation.volume97-
dc.citation.number1-
dc.citation.startPage485-
dc.citation.endPage506-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryNeurosciences-
dc.subject.keywordPlusBODY-MASS INDEX-
dc.subject.keywordPlusINDUCED OBESITY-
dc.subject.keywordPlusWALLERIAN DEGENERATION-
dc.subject.keywordPlusINSULIN-RESISTANCE-
dc.subject.keywordPlusMETABOLIC SYNDROME-
dc.subject.keywordPlusMOUSE MODEL-
dc.subject.keywordPlusIMPAIRMENT-
dc.subject.keywordPlusACTIVATION-
dc.subject.keywordPlusEXERCISE-
dc.subject.keywordPlusCORTEX-
dc.subject.keywordAuthordiffusion tensor image-
dc.subject.keywordAuthorfunctional magnetic resonance image-
dc.subject.keywordAuthorhigh-fat diet-
dc.subject.keywordAuthorobesity-
dc.subject.keywordAuthortau-
dc.subject.keywordAuthortransgenic mice-
dc.subject.keywordAuthorwhite matter integrity-
dc.subject.keywordAuthorAlzheimer’s disease-
Appears in Collections:
Center for Neuroscience Imaging Research (뇌과학 이미징 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse