BROWSE

Related Scientist

ccp's photo.

ccp
기후물리연구단
more info

ITEM VIEW & DOWNLOAD

Relative importance of VECTRI model parameters in the malaria disease transmission and prevalence

DC Field Value Language
dc.contributor.authorRuchi Singh Parihar-
dc.contributor.authorKumar, Vaibhav-
dc.contributor.authorAnand, Abhishek-
dc.contributor.authorBal, Prasanta Kumar-
dc.contributor.authorThapliyal, Ashish-
dc.date.accessioned2024-02-19T22:00:13Z-
dc.date.available2024-02-19T22:00:13Z-
dc.date.created2024-01-08-
dc.date.issued2024-03-
dc.identifier.issn0020-7128-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/14813-
dc.description.abstractIn this study, a sensitivity analysis on a VECTRI dynamical model of malaria transmission is investigated to determine the relative importance of model parameters to disease transmission and prevalence. Apart from being most climatic prone, Odisha is a highly endemic state for malaria in India. The lack in sufficient modeling studies severely impacts the malarial process studies which further hinder the possibility of malaria early warning systems and preventive measures to be undertaken beforehand. Therefore, modeling studies and investigating the relationship between malaria transmission process studies and associated climatic factors are the need of the hour. Environmental conditions have pronounced effects on the malaria transmission dynamics and abundance of the poikilothermic vectors, but the exact relationship of sensitivity for these parameters is not well established. Sensitivity analysis is a useful tool for ascertaining model responses to different input variables. Therefore, in order to perform the requisite study, a dynamical model, VECTRI, is utilized. The study period ranges from 2000 to 2013, where several sensitivity tests are performed using different model parameters such as infiltration and evaporation rate loss of ponds, degree-days for parasite development, threshold temperature for parasite development, threshold temperature for egg development in the vector, and maximum and minimum temperature for larvae survival. The experiments suggest that the lower value of minimum temperature for larvae survival (rlarv_tmin), i.e., 16 °C, provides higher vector density and entomological inoculation rate (EIR) values. EIR reaches its maximum, when the threshold temperature for parasite development (rtsporo) is 22 °C and degree-days for parasite development (dsporo) is 8 degree-days. No change is observed in the vector density; even when rtsporo is 30 °C, values of EIR are close to 0. A successive increment of infiltration and evaporation rate loss of ponds (rwaterfrac evap126) values from 130 to 200 mm/day result in approximately 5% consistent decline in vector density and EIR. The study concludes that the most sensitive parameters are dsporo, rlarv_tmin, and rwaterfrac evap126. The VECTRI model is rather insensitive to maximum temperature for larvae survival (rlarv_tmin) for vector density and EIR variables. Further certain modifications and improvements are required in VECTRI to predict out variables like vector density and EIR more accurately in highly endemic region. © 2023, The Author(s) under exclusive licence to International Society of Biometeorology.-
dc.language영어-
dc.publisherSpringer Science and Business Media Deutschland GmbH-
dc.titleRelative importance of VECTRI model parameters in the malaria disease transmission and prevalence-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid001132456300001-
dc.identifier.scopusid2-s2.0-85180838767-
dc.identifier.rimsid82357-
dc.contributor.affiliatedAuthorRuchi Singh Parihar-
dc.identifier.doi10.1007/s00484-023-02607-z-
dc.identifier.bibliographicCitationInternational Journal of Biometeorology, v.68, pp.495 - 509-
dc.relation.isPartOfInternational Journal of Biometeorology-
dc.citation.titleInternational Journal of Biometeorology-
dc.citation.volume68-
dc.citation.startPage495-
dc.citation.endPage509-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryBiophysics-
dc.relation.journalWebOfScienceCategoryEnvironmental Sciences-
dc.relation.journalWebOfScienceCategoryMeteorology & Atmospheric Sciences-
dc.relation.journalWebOfScienceCategoryPhysiology-
dc.subject.keywordPlusCLIMATE-CHANGE PROJECTIONS-
dc.subject.keywordPlusANOPHELES-GAMBIAE-
dc.subject.keywordPlusMATHEMATICAL-MODEL-
dc.subject.keywordPlusBORNE-DISEASES-
dc.subject.keywordPlusAQUATIC STAGES-
dc.subject.keywordPlusTEMPERATURE-
dc.subject.keywordPlusIMMUNITY-
dc.subject.keywordPlusINDIA-
dc.subject.keywordPlusEPIDEMIOLOGY-
dc.subject.keywordPlusINSECTICIDES-
dc.subject.keywordAuthorEntomological inoculation rate-
dc.subject.keywordAuthorMalaria-
dc.subject.keywordAuthorSensitivity analysis-
dc.subject.keywordAuthorVECTRI-
Appears in Collections:
Center for Climate Physics(기후물리 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse