Single-atom catalysts supported on a hybrid structure of boron nitride/graphene for efficient nitrogen fixation via synergistic interfacial interactions
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Mohammad Zafari | - |
dc.contributor.author | Anand, Rohit | - |
dc.contributor.author | Nissimagoudar, Arun S. | - |
dc.contributor.author | Ha, Miran | - |
dc.contributor.author | Geunsik Lee | - |
dc.contributor.author | Kim, Kwang S. | - |
dc.date.accessioned | 2024-01-22T22:00:17Z | - |
dc.date.available | 2024-01-22T22:00:17Z | - |
dc.date.created | 2023-12-26 | - |
dc.date.issued | 2024-01 | - |
dc.identifier.issn | 2040-3364 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/14693 | - |
dc.description.abstract | Hexagonal boron nitride (BN) shows significant chemical stability and promising thermal nitrogen reduction reaction (NRR) activity but suffers from low conductivity in electrolysis with a wide band gap. To overcome this problem, two-dimensional (2D) BN and graphene (G) are designed as a heterostructure, namely BN/G. According to density functional theory (DFT), the higher conductivity of G narrows the band gap of BN by inducing some electronic states near the Fermi energy level (Ef). Once transition metals (TMs) are anchored in the BN/G structure as single atom catalysts (SACs), the NRR activity improves as the inert BN basal layer activates with moderate *NH2 binding energy and further the band gap is reduced to zero. V (vanadium) and W (tungsten) SACs exhibit the best performance with limiting potentials of −0.22 and −0.41 V, respectively. This study helps in understanding the improvement of the NRR activity of BN, providing physical insights into the adsorbate-TM interaction. © 2024 The Royal Society of Chemistry. | - |
dc.language | 영어 | - |
dc.publisher | Royal Society of Chemistry | - |
dc.title | Single-atom catalysts supported on a hybrid structure of boron nitride/graphene for efficient nitrogen fixation via synergistic interfacial interactions | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 001125013100001 | - |
dc.identifier.scopusid | 2-s2.0-85179812918 | - |
dc.identifier.rimsid | 82298 | - |
dc.contributor.affiliatedAuthor | Mohammad Zafari | - |
dc.contributor.affiliatedAuthor | Geunsik Lee | - |
dc.identifier.doi | 10.1039/d3nr05295h | - |
dc.identifier.bibliographicCitation | Nanoscale, v.16, no.2, pp.555 - 563 | - |
dc.relation.isPartOf | Nanoscale | - |
dc.citation.title | Nanoscale | - |
dc.citation.volume | 16 | - |
dc.citation.number | 2 | - |
dc.citation.startPage | 555 | - |
dc.citation.endPage | 563 | - |
dc.type.docType | Article | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalResearchArea | Physics | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Physics, Applied | - |
dc.subject.keywordPlus | REDUCTION | - |
dc.subject.keywordPlus | EVOLUTION | - |
dc.subject.keywordPlus | ELECTROCATALYSTS | - |
dc.subject.keywordPlus | N-2 FIXATION | - |
dc.subject.keywordPlus | NITRIDE | - |