On the Representation Learning of Conditional Biometrics for Flexible Deployment
DC Field | Value | Language |
---|---|---|
dc.contributor.author | TIONG-SIK NG | - |
dc.contributor.author | CHENG-YAW LOW | - |
dc.contributor.author | JACKY CHEN LONG CHAI | - |
dc.contributor.author | ANDREW BENG JIN TEOH | - |
dc.date.accessioned | 2024-01-18T22:00:54Z | - |
dc.date.available | 2024-01-18T22:00:54Z | - |
dc.date.created | 2023-08-16 | - |
dc.date.issued | 2023-08 | - |
dc.identifier.issn | 2169-3536 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/14669 | - |
dc.description.abstract | Unimodal biometric systems are commonplace nowadays. However, there remains room for performance improvement. Multimodal biometrics, i.e., the combination of more than one biometric modality, is one of the promising remedies; yet, there lie various limitations in deployment, e.g., availability, template management, deployment cost, etc. In this paper, we propose a new notion dubbed Conditional Biometrics representation for flexible biometrics deployment, whereby a biometric modality is utilized to condition another for representation learning. We demonstrate the proposed conditioned representation learning on the face and periocular biometrics via a deep network dubbed the Conditional Biometrics Network. Our proposed Conditional Biometrics Network is a representation extractor for unimodal, multimodal, and cross-modal matching during deployment. Our experimental results on five in-the-wild periocular-face datasets demonstrate that the network outperforms their respective baselines for identification and verification tasks in all deployment scenarios. Author | - |
dc.language | 영어 | - |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | - |
dc.title | On the Representation Learning of Conditional Biometrics for Flexible Deployment | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 001047308300001 | - |
dc.identifier.scopusid | 2-s2.0-85166741976 | - |
dc.identifier.rimsid | 81449 | - |
dc.contributor.affiliatedAuthor | CHENG-YAW LOW | - |
dc.identifier.doi | 10.1109/ACCESS.2023.3301150 | - |
dc.identifier.bibliographicCitation | IEEE Access, v.11, pp.1 - 1 | - |
dc.relation.isPartOf | IEEE Access | - |
dc.citation.title | IEEE Access | - |
dc.citation.volume | 11 | - |
dc.citation.startPage | 1 | - |
dc.citation.endPage | 1 | - |
dc.type.docType | Article | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Computer Science | - |
dc.relation.journalResearchArea | Engineering | - |
dc.relation.journalResearchArea | Telecommunications | - |
dc.relation.journalWebOfScienceCategory | Computer Science, Information Systems | - |
dc.relation.journalWebOfScienceCategory | Engineering, Electrical & Electronic | - |
dc.relation.journalWebOfScienceCategory | Telecommunications | - |
dc.subject.keywordAuthor | Biometrics (access control) | - |
dc.subject.keywordAuthor | conditional biometrics | - |
dc.subject.keywordAuthor | Correlation | - |
dc.subject.keywordAuthor | face | - |
dc.subject.keywordAuthor | Face recognition | - |
dc.subject.keywordAuthor | Faces | - |
dc.subject.keywordAuthor | flexible matching | - |
dc.subject.keywordAuthor | Iris recognition | - |
dc.subject.keywordAuthor | Performance gain | - |
dc.subject.keywordAuthor | periocular | - |
dc.subject.keywordAuthor | Representation learning | - |
dc.subject.keywordAuthor | representation learning | - |