Measuring energy by measuring any other observable
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Dominik Safranek | - |
dc.contributor.author | Dario Rosa | - |
dc.date.accessioned | 2023-11-02T22:00:41Z | - |
dc.date.available | 2023-11-02T22:00:41Z | - |
dc.date.created | 2023-09-12 | - |
dc.date.issued | 2023-08 | - |
dc.identifier.issn | 2469-9926 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/14080 | - |
dc.description.abstract | We present a method to estimate the probabilities of outcomes of a quantum observable, its mean value, and higher moments by measuring any other observable. This method is general and can be applied to any quantum system. In the case of estimating the mean energy of an isolated system, the estimate can be further improved by measuring the other observable at different times. Intuitively, this method uses interplay and correlations between the measured observable, the estimated observable, and the state of the system. We provide two bounds: one that is looser but analytically computable and one that is tighter but requires solving a nonconvex optimization problem. The method can be used to estimate expectation values and related quantities such as temperature and work in setups where performing measurements in a highly entangled basis is difficult, finding use in state-ofthe-art quantum simulators. As a demonstration, we show that in Heisenberg and Ising models of ten sites in the localized phase, performing two-qubit measurements excludes 97.5% and 96.7% of the possible range of energies, respectively, when estimating the ground-state energy. | - |
dc.language | 영어 | - |
dc.publisher | AMER PHYSICAL SOC | - |
dc.title | Measuring energy by measuring any other observable | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 001052957200001 | - |
dc.identifier.scopusid | 2-s2.0-85169297330 | - |
dc.identifier.rimsid | 81709 | - |
dc.contributor.affiliatedAuthor | Dominik Safranek | - |
dc.contributor.affiliatedAuthor | Dario Rosa | - |
dc.identifier.doi | 10.1103/PhysRevA.108.022208 | - |
dc.identifier.bibliographicCitation | PHYSICAL REVIEW A, v.108, no.2 | - |
dc.relation.isPartOf | PHYSICAL REVIEW A | - |
dc.citation.title | PHYSICAL REVIEW A | - |
dc.citation.volume | 108 | - |
dc.citation.number | 2 | - |
dc.type.docType | Article | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Optics | - |
dc.relation.journalResearchArea | Physics | - |
dc.relation.journalWebOfScienceCategory | Optics | - |
dc.relation.journalWebOfScienceCategory | Physics, Atomic, Molecular & Chemical | - |
dc.subject.keywordPlus | POLARIZATION ECHOES | - |
dc.subject.keywordPlus | EXPECTATION VALUES | - |
dc.subject.keywordPlus | QUANTUM | - |
dc.subject.keywordPlus | HOMODYNE | - |
dc.subject.keywordPlus | WORK | - |
dc.subject.keywordPlus | OPTIMIZATION | - |
dc.subject.keywordPlus | THERMOMETRY | - |
dc.subject.keywordPlus | TOMOGRAPHY | - |
dc.subject.keywordPlus | ENTROPY | - |
dc.subject.keywordPlus | HEAT | - |