Universal Anderson localization in one-dimensional unitary maps
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ihor Vakulchyk | - |
dc.contributor.author | Sergej Flach | - |
dc.date.accessioned | 2023-11-02T22:00:38Z | - |
dc.date.available | 2023-11-02T22:00:38Z | - |
dc.date.created | 2023-09-12 | - |
dc.date.issued | 2023-08 | - |
dc.identifier.issn | 1054-1500 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/14079 | - |
dc.description.abstract | We study Anderson localization in discrete-time quantum map dynamics in one dimension with nearest-neighbor hopping strength ? and quasienergies located on the unit circle. We demonstrate that strong disorder in a local phase field yields a uniform spectrum gaplessly occupying the entire unit circle. The resulting eigenstates are exponentially localized. Remarkably this Anderson localization is universal as all eigenstates have one and the same localization length L-loc. We present an exact theory for the calculation of the localization length as a function of the hopping, 1/L-loc = |ln (| sin(?)|) , which is tunable between zero and infinity by variation of the hopping ?. | - |
dc.language | 영어 | - |
dc.publisher | AIP Publishing | - |
dc.title | Universal Anderson localization in one-dimensional unitary maps | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 001048335500010 | - |
dc.identifier.scopusid | 2-s2.0-85168720920 | - |
dc.identifier.rimsid | 81710 | - |
dc.contributor.affiliatedAuthor | Ihor Vakulchyk | - |
dc.contributor.affiliatedAuthor | Sergej Flach | - |
dc.identifier.doi | 10.1063/5.0141808 | - |
dc.identifier.bibliographicCitation | CHAOS, v.33, no.8 | - |
dc.relation.isPartOf | CHAOS | - |
dc.citation.title | CHAOS | - |
dc.citation.volume | 33 | - |
dc.citation.number | 8 | - |
dc.type.docType | Article | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Mathematics | - |
dc.relation.journalResearchArea | Physics | - |
dc.relation.journalWebOfScienceCategory | Mathematics, Applied | - |
dc.relation.journalWebOfScienceCategory | Physics, Mathematical | - |