Correlated insulator collapse due to quantum avalanche via in-gap ladder states
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Han, Jong E. | - |
dc.contributor.author | Aron, Camille | - |
dc.contributor.author | Chen, Xi | - |
dc.contributor.author | Mansaray, Ishiaka | - |
dc.contributor.author | Jae-Ho Han | - |
dc.contributor.author | Kim, Ki-Seok | - |
dc.contributor.author | Randle, Michael | - |
dc.contributor.author | Bird, Jonathan P. | - |
dc.date.accessioned | 2023-06-26T22:00:54Z | - |
dc.date.available | 2023-06-26T22:00:54Z | - |
dc.date.created | 2023-06-09 | - |
dc.date.issued | 2023-05 | - |
dc.identifier.issn | 2041-1723 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/13497 | - |
dc.description.abstract | The significant discrepancy observed between the predicted and experimental switching fields in correlated insulators under a DC electric field far-from-equilibrium necessitates a reevaluation of current microscopic understanding. Here we show that an electron avalanche can occur in the bulk limit of such insulators at arbitrarily small electric field by introducing a generic model of electrons coupled to an inelastic medium of phonons. The quantum avalanche arises by the generation of a ladder of in-gap states, created by a multi-phonon emission process. Hot-phonons in the avalanche trigger a premature and partial collapse of the correlated gap. The phonon spectrum dictates the existence of two-stage versus single-stage switching events which we associate with charge-density-wave and Mott resistive phase transitions, respectively. The behavior of electron and phonon temperatures, as well as the temperature dependence of the threshold fields, demonstrates how a crossover between the thermal and quantum switching scenarios emerges within a unified framework of the quantum avalanche. © 2023, The Author(s). | - |
dc.language | 영어 | - |
dc.publisher | Nature Research | - |
dc.title | Correlated insulator collapse due to quantum avalanche via in-gap ladder states | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 001024186000021 | - |
dc.identifier.scopusid | 2-s2.0-85159849278 | - |
dc.identifier.rimsid | 80928 | - |
dc.contributor.affiliatedAuthor | Jae-Ho Han | - |
dc.identifier.doi | 10.1038/s41467-023-38557-8 | - |
dc.identifier.bibliographicCitation | Nature Communications, v.14, no.1 | - |
dc.relation.isPartOf | Nature Communications | - |
dc.citation.title | Nature Communications | - |
dc.citation.volume | 14 | - |
dc.citation.number | 1 | - |
dc.type.docType | Article | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.relation.journalWebOfScienceCategory | Multidisciplinary Sciences | - |
dc.subject.keywordPlus | CHARGE-DENSITY WAVES | - |
dc.subject.keywordPlus | MEAN-FIELD THEORY | - |
dc.subject.keywordPlus | ELECTRIC-FIELD | - |
dc.subject.keywordPlus | TRANSITION | - |
dc.subject.keywordPlus | DYNAMICS | - |
dc.subject.keywordPlus | TAS3 | - |