Parametric control of flexible timing through low-dimensional neural manifolds
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Beiran, Manuel | - |
dc.contributor.author | Meirhaeghe, Nicolas | - |
dc.contributor.author | Hansem Sohn | - |
dc.contributor.author | Jazayeri, Mehrdad | - |
dc.contributor.author | Ostojic, Srdjan | - |
dc.date.accessioned | 2023-05-04T22:00:48Z | - |
dc.date.available | 2023-05-04T22:00:48Z | - |
dc.date.created | 2023-04-26 | - |
dc.date.issued | 2023-03 | - |
dc.identifier.issn | 0896-6273 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/13321 | - |
dc.description.abstract | Biological brains possess an unparalleled ability to adapt behavioral responses to changing stimuli and en-vironments. How neural processes enable this capacity is a fundamental open question. Previous works have identified two candidate mechanisms: a low-dimensional organization of neural activity and a modulation by contextual inputs. We hypothesized that combining the two might facilitate generalization and adaptation in complex tasks. We tested this hypothesis in flexible timing tasks where dynamics play a key role. Examining trained recurrent neural networks, we found that confining the dynamics to a low-dimensional subspace al-lowed tonic inputs to parametrically control the overall input-output transform, enabling generalization to novel inputs and adaptation to changing conditions. Reverse-engineering and theoretical analyses demon-strated that this parametric control relies on a mechanism where tonic inputs modulate the dynamics along non-linear manifolds while preserving their geometry. Comparisons with data from behaving monkeys confirmed the behavioral and neural signatures of this mechanism. | - |
dc.language | 영어 | - |
dc.publisher | CELL PRESS | - |
dc.title | Parametric control of flexible timing through low-dimensional neural manifolds | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000952590800001 | - |
dc.identifier.scopusid | 2-s2.0-85148322906 | - |
dc.identifier.rimsid | 80607 | - |
dc.contributor.affiliatedAuthor | Hansem Sohn | - |
dc.identifier.doi | 10.1016/j.neuron.2022.12.016 | - |
dc.identifier.bibliographicCitation | NEURON, v.111, no.5, pp.739 - 753 | - |
dc.relation.isPartOf | NEURON | - |
dc.citation.title | NEURON | - |
dc.citation.volume | 111 | - |
dc.citation.number | 5 | - |
dc.citation.startPage | 739 | - |
dc.citation.endPage | 753 | - |
dc.type.docType | Article | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Neurosciences & Neurology | - |
dc.relation.journalWebOfScienceCategory | Neurosciences | - |
dc.subject.keywordPlus | DYNAMICS | - |
dc.subject.keywordPlus | TIME | - |
dc.subject.keywordPlus | COMPUTATIONS | - |
dc.subject.keywordPlus | MECHANISM | - |
dc.subject.keywordPlus | REPRESENTATIONS | - |
dc.subject.keywordPlus | VARIABLES | - |
dc.subject.keywordPlus | NETWORK | - |