BROWSE

Related Scientist

gel's photo.

gel
유전체교정연구단
more info

ITEM VIEW & DOWNLOAD

Prime editing with genuine Cas9 nickases minimizes unwanted indels

Cited 0 time in webofscience Cited 0 time in scopus
302 Viewed 0 Downloaded
Title
Prime editing with genuine Cas9 nickases minimizes unwanted indels
Author(s)
Jaesuk Lee; Kayeong Lim; Annie Kim; Young Gun Mok; Eugene Chung; Sung-Ik Cho; Ji Min Lee; Jin Soo Kim
Publication Date
2023-03
Journal
Nature Communications, v.14, no.1
Publisher
Nature Research
Abstract
Unlike CRISPR-Cas9 nucleases, which yield DNA double-strand breaks (DSBs), Cas9 nickases (nCas9s), which are created by replacing key catalytic amino-acid residues in one of the two nuclease domains of S. pyogenesis Cas9 (SpCas9), produce nicks or single-strand breaks. Two SpCas9 variants, namely, nCas9 (D10A) and nCas9 (H840A), which cleave target (guide RNA-pairing) and non-target DNA strands, respectively, are widely used for various purposes, including paired nicking, homology-directed repair, base editing, and prime editing. In an effort to define the off-target nicks caused by these nickases, we perform Digenome-seq, a method based on whole genome sequencing of genomic DNA treated with a nuclease or nickase of interest, and find that nCas9 (H840A) but not nCas9 (D10A) can cleave both strands, producing unwanted DSBs, albeit less efficiently than wild-type Cas9. To inactivate the HNH nuclease domain further, we incorporate additional mutations into nCas9 (H840A). Double-mutant nCas9 (H840A + N863A) does not exhibit the DSB-inducing behavior in vitro and, either alone or in fusion with the M-MLV reverse transcriptase (prime editor, PE2 or PE3), induces a lower frequency of unwanted indels, compared to nCas9 (H840A), caused by error-prone repair of DSBs. When incorporated into prime editor and used with engineered pegRNAs (ePE3), we find that the nCas9 variant (H840A + N854A) dramatically increases the frequency of correct edits, but not unwanted indels, yielding the highest purity of editing outcomes compared to nCas9 (H840A). © 2023, The Author(s).
URI
https://pr.ibs.re.kr/handle/8788114/13302
DOI
10.1038/s41467-023-37507-8
ISSN
2041-1723
Appears in Collections:
Center for Genome Engineering(유전체 교정 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse