BROWSE

Related Scientist

kim,hyojung's photo.

kim,hyojung
식물노화·수명연구단
more info

ITEM VIEW & DOWNLOAD

A role for two-component signaling elements in the Arabidopsis growth recovery response to ethylene

DC Field Value Language
dc.contributor.authorBinder, B.M.-
dc.contributor.authorHyo Jung Kim-
dc.contributor.authorMathews, D.E.-
dc.contributor.authorHutchison, C.E.-
dc.contributor.authorKieber, J.J.-
dc.contributor.authorSchaller, G.E.-
dc.date.accessioned2023-04-04T22:11:55Z-
dc.date.available2023-04-04T22:11:55Z-
dc.date.created2022-07-25-
dc.date.issued2018-05-
dc.identifier.issn2475-4455-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/13163-
dc.description.abstractPrevious studies indicate that the ability of Arabidopsis seedlings to recover normal growth following an ethylene treatment involves histidine kinase activity of the ethylene receptors. As histidine kinases can function as inputs for a two-component signaling system, we examined loss-of-function mutants involving two-component signaling elements. We find that mutants of phosphotransfer proteins and type-B response regulators exhibit a defect in their ethylene growth recovery response similar to that found with the loss-of-function ethylene receptor mutant etr1-7. The ability of two-component signaling elements to regulate the growth recovery response to ethylene functions independently from their well-characterized role in cytokinin signaling, based on the analysis of cytokinin receptor mutants as well as following chemical inhibition of cytokinin biosynthesis. Histidine kinase activity of the receptor ETR1 also facilitates growth recovery in the ethylene hypersensitive response, which is characterized by a transient decrease in growth rate when seedlings are treated continuously with a low dose of ethylene; however, this response was found to operate independently of the type-B response regulators. These results indicate that histidine kinase activity of the ethylene receptor ETR1 performs two independent functions: (a) regulating the growth recovery to ethylene through a two-component signaling system involving phosphotransfer proteins and type-B response regulators and (b) regulating the hypersensitive response to ethylene in a type-B response regulator independent manner. © 2018 The Authors. Plant Direct published by American Society of Plant Biologists, Society for Experimental Biology and John Wiley & Sons Ltd.-
dc.language영어-
dc.publisherJohn Wiley and Sons Inc.-
dc.titleA role for two-component signaling elements in the Arabidopsis growth recovery response to ethylene-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000509892200001-
dc.identifier.scopusid2-s2.0-85052392157-
dc.identifier.rimsid78557-
dc.contributor.affiliatedAuthorHyo Jung Kim-
dc.identifier.doi10.1002/pld3.58-
dc.identifier.bibliographicCitationPlant Direct, v.2, no.5, pp.1 - 9-
dc.relation.isPartOfPlant Direct-
dc.citation.titlePlant Direct-
dc.citation.volume2-
dc.citation.number5-
dc.citation.startPage1-
dc.citation.endPage9-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordAuthorArabidopsis-
dc.subject.keywordAuthorethylene-
dc.subject.keywordAuthorhistidine kinase-
dc.subject.keywordAuthorphosphotransfer protein-
dc.subject.keywordAuthorreceptor-
dc.subject.keywordAuthorresponse regulator-
Appears in Collections:
Center for Plant Aging Research (식물 노화·수명 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse