BROWSE

ITEM VIEW & DOWNLOAD

Development of a Universal Cloning System for Reverse Genetics of Human Enteroviruses

Cited 0 time in webofscience Cited 0 time in scopus
324 Viewed 0 Downloaded
Title
Development of a Universal Cloning System for Reverse Genetics of Human Enteroviruses
Author(s)
Choi, Won-Suk; Oh, Sol; Antigua, Khristine Joy C.; Jeong, Ju Hwan; Kim, Beom Kyu; Yun, Yu Soo; Kang, Da Hyeon; Min, Seong Cheol; Lim, Byung-Kwan; Kim, Won Seop; Lee, Ji-Hyuk; Kim, Eung-Gook; Young Ki Choi; Baek, Yun Hee; Song, Min-Suk
Publication Date
2023-02
Journal
MICROBIOLOGY SPECTRUM, v.11, no.1, pp.1 - 13
Publisher
AMER SOC MICROBIOLOGY
Abstract
Due to the broad spread, incidence, and genetic divergence of enteroviruses (EVs), it has been challenging to deal with this virus that causes severe human diseases, including aseptic meningitis, myocarditis, encephalitis, and poliomyelitis. Therefore, an efficient and universal cloning system for the reverse genetics of highly divergent EVs contributes to an understanding of the viral pathology and molecular mechanisms of evolution. Enteroviruses (EVs) have been associated with several human diseases. Due to their continuous emergence and divergence, EV species have generated more than 100 types and recombinant strains, increasing the public health threat caused by them. Hence, an efficient and universal cloning system for reverse genetics (RG) of highly divergent viruses is needed to understand the molecular mechanisms of viral pathology and evolution. In this study, we generated a versatile human EV whole-genome cDNA template by enhancing the template-switching method and designing universal primers capable of simultaneous cloning and rapid amplification of cDNA ends (RACE)-PCR of EVs. Moreover, by devising strategies to overcome limitations of previous cloning methods, we simplified significant cloning steps to be completed within a day. Of note, we successfully verified our efficient universal cloning system enabling RG of a broad range of human EVs, including EV-A (EV-A71), EV-B (CV-B5, ECHO6, and ECHO30), EV-C (CV-A24), and EV-D (EV-D68), with viral titers and phenotypes comparable to those of their wild types. This rapid and straightforward universal EV cloning strategy will help us elucidate molecular characteristics, pathogenesis, and applications of a broad range of EV serotypes for further development of genetic vaccines and delivery tools using various replication systems.IMPORTANCE Due to the broad spread, incidence, and genetic divergence of enteroviruses (EVs), it has been challenging to deal with this virus that causes severe human diseases, including aseptic meningitis, myocarditis, encephalitis, and poliomyelitis. Therefore, an efficient and universal cloning system for the reverse genetics of highly divergent EVs contributes to an understanding of the viral pathology and molecular mechanisms of evolution. We have simplified the important cloning steps, hereby enhancing the template-switching method and designing universal primers, which enable the important cloning steps to be completed in a day. We have also successfully demonstrated recovery of a broad range of human EVs, including EV-A to -D types, using this advanced universal cloning system. This rapid and robust universal EV cloning strategy will aid in elucidating the molecular characteristics, pathogenesis, and applications of a wide range of EVs for further development of genetic vaccines and antiviral screening using various replication systems.
URI
https://pr.ibs.re.kr/handle/8788114/13138
DOI
10.1128/spectrum.03167-22
ISSN
2165-0497
Appears in Collections:
Korea Virus Research Institute(한국바이러스기초연구소) > Center for Study of Emerging and Re-emerging Viruses(신변종 바이러스 연구센터) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse