BROWSE

Related Scientist

cnir's photo.

cnir
뇌과학이미징연구단
more info

ITEM VIEW & DOWNLOAD

BrainStat: A toolbox for brain-wide statistics and multimodal feature associations

DC Field Value Language
dc.contributor.authorLarivière, S.-
dc.contributor.authorBayrak, Ş.-
dc.contributor.authorVos, de Wael R.-
dc.contributor.authorBenkarim, O.-
dc.contributor.authorHerholz, P.-
dc.contributor.authorRodriguez-Cruces, R.-
dc.contributor.authorPaquola, C.-
dc.contributor.authorSeok-Jun Hong-
dc.contributor.authorMisic, B.-
dc.contributor.authorEvans, A.C.-
dc.contributor.authorValk, S.L.-
dc.contributor.authorBernhardt, B.C.-
dc.date.accessioned2023-02-20T22:00:30Z-
dc.date.available2023-02-20T22:00:30Z-
dc.date.created2023-01-19-
dc.date.issued2023-02-
dc.identifier.issn1053-8119-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/13035-
dc.description.abstractAnalysis and interpretation of neuroimaging datasets has become a multidisciplinary endeavor, relying not only on statistical methods, but increasingly on associations with respect to other brain-derived features such as gene expression, histological data, and functional as well as cognitive architectures. Here, we introduce BrainStat - a toolbox for (i) univariate and multivariate linear models in volumetric and surface-based brain imaging datasets, and (ii) multidomain feature association of results with respect to spatial maps of post-mortem gene expression and histology, task-based fMRI meta-analysis, as well as resting-state fMRI motifs across several common surface templates. The combination of statistics and feature associations into a turnkey toolbox streamlines analytical processes and accelerates cross-modal research. The toolbox is implemented in both Python and MATLAB, two widely used programming languages in the neuroimaging and neuroinformatics communities. BrainStat is openly available and complemented by an expandable documentation. © 2022-
dc.language영어-
dc.publisherAcademic Press Inc.-
dc.titleBrainStat: A toolbox for brain-wide statistics and multimodal feature associations-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000961144700001-
dc.identifier.scopusid2-s2.0-85145668634-
dc.identifier.rimsid79718-
dc.contributor.affiliatedAuthorSeok-Jun Hong-
dc.identifier.doi10.1016/j.neuroimage.2022.119807-
dc.identifier.bibliographicCitationNeuroImage, v.266-
dc.relation.isPartOfNeuroImage-
dc.citation.titleNeuroImage-
dc.citation.volume266-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaNeurosciences & Neurology-
dc.relation.journalResearchAreaRadiology, Nuclear Medicine & Medical Imaging-
dc.relation.journalWebOfScienceCategoryNeurosciences-
dc.relation.journalWebOfScienceCategoryNeuroimaging-
dc.relation.journalWebOfScienceCategoryRadiology, Nuclear Medicine & Medical Imaging-
dc.subject.keywordPlusHUMAN CEREBRAL-CORTEX-
dc.subject.keywordPlusFUNCTIONAL CONNECTIVITY-
dc.subject.keywordPlusCORTICAL THICKNESS-
dc.subject.keywordPlusGENE-EXPRESSION-
dc.subject.keywordPlusNETWORK-
dc.subject.keywordPlusPARCELLATION-
dc.subject.keywordPlusMODELS-
dc.subject.keywordPlusENIGMA-
dc.subject.keywordPlusEXTENT-
dc.subject.keywordAuthorMultivariate analysis-
dc.subject.keywordAuthorNeuroimaging-
dc.subject.keywordAuthorUnivariate analysis-
Appears in Collections:
Center for Neuroscience Imaging Research (뇌과학 이미징 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse