BROWSE

Related Scientist

ccp's photo.

ccp
기후물리연구단
more info

ITEM VIEW & DOWNLOAD

Systematic multi-scale decomposition of ocean variability using machine learning

DC Field Value Language
dc.contributor.authorChristian L. E. Franzke-
dc.contributor.authorGugole, Federica-
dc.contributor.authorJuricke, Stephan-
dc.date.accessioned2023-01-27T01:50:37Z-
dc.date.available2023-01-27T01:50:37Z-
dc.date.created2022-08-26-
dc.date.issued2022-07-
dc.identifier.issn1054-1500-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/12899-
dc.description.abstractMulti-scale systems, such as the climate system, the atmosphere, and the ocean, are hard to understand and predict due to their intrinsic nonlinearities and chaotic behavior. Here, we apply a physics-consistent machine learning method, the multi-resolution dynamic mode decomposition (mrDMD), to oceanographic data. mrDMD allows a systematic decomposition of high-dimensional data sets into time-scale dependent modes of variability. We find that mrDMD is able to systematically decompose sea surface temperature and sea surface height fields into dynamically meaningful patterns on different time scales. In particular, we find that mrDMD is able to identify varying annual cycle modes and is able to extract El Nino-Southern Oscillation events as transient phenomena. mrDMD is also able to extract propagating meanders related to the intensity and position of the Gulf Stream and Kuroshio currents. While mrDMD systematically identifies mean state changes similarly well compared to other methods, such as empirical orthogonal function decomposition, it also provides information about the dynamically propagating eddy component of the flow. Furthermore, these dynamical modes can also become progressively less important as time progresses in a specific time period, making them also state dependent. (C) 2022 Author(s).-
dc.language영어-
dc.publisherAIP Publishing-
dc.titleSystematic multi-scale decomposition of ocean variability using machine learning-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000829482500003-
dc.identifier.scopusid2-s2.0-85135013486-
dc.identifier.rimsid78714-
dc.contributor.affiliatedAuthorChristian L. E. Franzke-
dc.identifier.doi10.1063/5.0090064-
dc.identifier.bibliographicCitationCHAOS, v.32, no.7-
dc.relation.isPartOfCHAOS-
dc.citation.titleCHAOS-
dc.citation.volume32-
dc.citation.number7-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryMathematics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Mathematical-
dc.subject.keywordPlusSTOCHASTIC MODE REDUCTION-
dc.subject.keywordPlusSEA-SURFACE TEMPERATURE-
dc.subject.keywordPlusDECADAL VARIABILITY-
dc.subject.keywordPlusSPECTRAL PROPERTIES-
dc.subject.keywordPlusDYNAMICAL-SYSTEMS-
dc.subject.keywordPlusPACIFIC-
dc.subject.keywordPlusOSCILLATION-
dc.subject.keywordPlusCYCLE-
Appears in Collections:
Center for Climate Physics(기후물리 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse