BROWSE

Related Scientist

capp's photo.

capp
액시온및극한상호작용연구단
more info

ITEM VIEW & DOWNLOAD

A machine learning algorithm for direct detection of axion-like particle domain walls

DC Field Value Language
dc.contributor.authorDongok Kim-
dc.contributor.authorKimball, Derek F. Jackson-
dc.contributor.authorMasia-Roig, Hector-
dc.contributor.authorSmiga, Joseph A.-
dc.contributor.authorWickenbrock, Arne-
dc.contributor.authorBudker, Dmitry-
dc.contributor.authorYounggeun Kim-
dc.contributor.authorYunchang Shin-
dc.contributor.authorYannis K. Semertzidis-
dc.date.accessioned2023-01-27T00:40:21Z-
dc.date.available2023-01-27T00:40:21Z-
dc.date.created2022-10-13-
dc.date.issued2022-09-
dc.identifier.issn2212-6864-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/12844-
dc.description.abstractThe Global Network of Optical Magnetometers for Exotic physics searches (GNOME) conducts an experimental search for certain forms of dark matter based on their spatiotemporal signatures imprinted on a global array of synchronized atomic magnetometers. The experiment described here looks for a gradient coupling of axion-like particles (ALPs) with proton spins as a signature of locally dense dark matter objects such as domain walls. In this work, stochastic optimization with machine learning is proposed for use in a search for ALP domain walls based on GNOME data. The validity and reliability of this method were verified using binary classification. The projected sensitivity of this new analysis method for ALP domain-wall crossing events is presented.-
dc.language영어-
dc.publisherElsevier BV-
dc.titleA machine learning algorithm for direct detection of axion-like particle domain walls-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000876646600009-
dc.identifier.scopusid2-s2.0-85138811000-
dc.identifier.rimsid78937-
dc.contributor.affiliatedAuthorDongok Kim-
dc.contributor.affiliatedAuthorYounggeun Kim-
dc.contributor.affiliatedAuthorYunchang Shin-
dc.contributor.affiliatedAuthorYannis K. Semertzidis-
dc.identifier.doi10.1016/j.dark.2022.101118-
dc.identifier.bibliographicCitationPhysics of the Dark Universe, v.37-
dc.relation.isPartOfPhysics of the Dark Universe-
dc.citation.titlePhysics of the Dark Universe-
dc.citation.volume37-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaAstronomy & Astrophysics-
dc.relation.journalWebOfScienceCategoryAstronomy & Astrophysics-
dc.subject.keywordPlusCONFIDENCE-INTERVALS-
dc.subject.keywordPlusCP CONSERVATION-
dc.subject.keywordPlusDARK-MATTER-
dc.subject.keywordPlusCOSMOLOGY-
dc.subject.keywordAuthorAxion-
dc.subject.keywordAuthorDark matter-
dc.subject.keywordAuthorLocalized dark matter-
dc.subject.keywordAuthorMachine learning-
dc.subject.keywordAuthorOptical magnetometer-
Appears in Collections:
Center for Axion and Precision Physics Research(액시온 및 극한상호작용 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse