Solutions to the Diophantine Equation x2 + 16 ∙ 7b = y2r
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yow, K.S. | - |
dc.contributor.author | Sapar, S.H. | - |
dc.contributor.author | Cheng Yaw Low | - |
dc.date.accessioned | 2023-01-26T02:49:37Z | - |
dc.date.available | 2023-01-26T02:49:37Z | - |
dc.date.created | 2022-12-16 | - |
dc.date.issued | 2022-07 | - |
dc.identifier.issn | 2289-599X | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/12778 | - |
dc.description.abstract | We present a method of determining integral solutions to the equation x2 + 16 ∙ 7b = y2r, where x, y, b, r ∈ ℤ+. We observe that the results can be classified into several categories. Under each category, a general formula is obtained using the geometric progression method. We then provide the bound for the number of non-negative integral solutions associated with each b. Lastly, the general formula for each of the categories is obtained and presented to determine the respective values of x and yr. We also highlight two special cases where different formulae are needed to represent their integral solutions. © Copyright Yow. This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited. | - |
dc.language | 영어 | - |
dc.publisher | Penerbit UTM Press | - |
dc.title | Solutions to the Diophantine Equation x2 + 16 ∙ 7b = y2r | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.scopusid | 2-s2.0-85143418044 | - |
dc.identifier.rimsid | 79451 | - |
dc.contributor.affiliatedAuthor | Cheng Yaw Low | - |
dc.identifier.doi | 10.11113/mjfas.v18n4.2580 | - |
dc.identifier.bibliographicCitation | Malaysian Journal of Fundamental and Applied Sciences, v.18, no.4, pp.489 - 496 | - |
dc.relation.isPartOf | Malaysian Journal of Fundamental and Applied Sciences | - |
dc.citation.title | Malaysian Journal of Fundamental and Applied Sciences | - |
dc.citation.volume | 18 | - |
dc.citation.number | 4 | - |
dc.citation.startPage | 489 | - |
dc.citation.endPage | 496 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordAuthor | Diophantine equation | - |
dc.subject.keywordAuthor | geometric progression | - |
dc.subject.keywordAuthor | integral solution | - |
dc.subject.keywordAuthor | polynomial | - |