Iridates have attracted much interest in the last decade for their novel magnetism emerging in the limit of strong spin-orbit coupling and possible unconventional superconductivity. A standard for growing iridate single crystals has been the flux method using platinum crucibles. Here, we show that this widely used method compromises the sample quality by inclusion of platinum impurities. We find that Sr2IrO4 single crystals grown in iridium crucibles show remarkable differences from those grown in platinum crucibles in their sample characterizations using Raman spectroscopy, resistivity, magnetization, optical third harmonic generation, resonant x-ray diffraction, and resonant inelastic x-ray scattering measurements. In particular, we show that several peaks of sizable intensities disappear in the Raman spectra of samples free of platinum impurities, and a significantly larger activation energy is extracted from the resistivity data compared to previously reported values. Furthermore, we find no evidence of the previously reported glide-symmetry-breaking structural distortions and confirm the I4(1)/acd space group of the lattice symmetry. Although the platinum impurities are not apparent in the magnetic properties and thus went unnoticed in the stoichiometric insulating phase for a long time, their effects can be much more detrimental to transport properties in chemically doped compounds. Therefore, our result suggests using growth methods that avoid platinum impurities for an investigation of the intrinsic physical properties of iridates, and possible superconducting phases.