BROWSE

Related Scientist

's photo.

수리및계산과학연구단
more info

ITEM VIEW & DOWNLOAD

Responses to COVID-19 with probabilistic programming

DC Field Value Language
dc.contributor.authorAssem Zhunis-
dc.contributor.authorTung-Duong Mai-
dc.contributor.authorSundong Kim-
dc.date.accessioned2023-01-26T02:30:00Z-
dc.date.available2023-01-26T02:30:00Z-
dc.date.created2022-12-16-
dc.date.issued2022-11-
dc.identifier.issn2296-2565-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/12546-
dc.description.abstractThe COVID-19 pandemic left its unique mark on the twenty-first century as one of the most significant disasters in history, triggering governments all over the world to respond with a wide range of interventions. However, these restrictions come with a substantial price tag. It is crucial for governments to form anti-virus strategies that balance the trade-off between protecting public health and minimizing the economic cost. This work proposes a probabilistic programming method to quantify the efficiency of major initial non-pharmaceutical interventions. We present a generative simulation model that accounts for the economic and human capital cost of adopting such strategies, and provide an end-to-end pipeline to simulate the virus spread and the incurred loss of various policy combinations. By investigating the national response in 10 countries covering four continents, we found that social distancing coupled with contact tracing is the most successful policy, reducing the virus transmission rate by 96% along with a 98% reduction in economic and human capital loss. Together with experimental results, we open-sourced a framework to test the efficacy of each policy combination. Copyright © 2022 Zhunis, Mai and Kim.-
dc.language영어-
dc.publisherFrontiers Media S.A.-
dc.titleResponses to COVID-19 with probabilistic programming-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000894247900001-
dc.identifier.scopusid2-s2.0-85143298207-
dc.identifier.rimsid79449-
dc.contributor.affiliatedAuthorAssem Zhunis-
dc.contributor.affiliatedAuthorTung-Duong Mai-
dc.contributor.affiliatedAuthorSundong Kim-
dc.identifier.doi10.3389/fpubh.2022.953472-
dc.identifier.bibliographicCitationFrontiers in Public Health, v.10-
dc.relation.isPartOfFrontiers in Public Health-
dc.citation.titleFrontiers in Public Health-
dc.citation.volume10-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassssci-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaPublic, Environmental & Occupational Health-
dc.relation.journalWebOfScienceCategoryPublic, Environmental & Occupational Health-
dc.subject.keywordPlusCHAIN MONTE-CARLO-
dc.subject.keywordPlusVACCINATION PROGRAM-
dc.subject.keywordPlusMCMC METHODS-
dc.subject.keywordPlusTIME-SERIES-
dc.subject.keywordPlusSEIR MODEL-
dc.subject.keywordPlusTRANSMISSION-
dc.subject.keywordPlusEPIDEMICS-
dc.subject.keywordPlusEBOLA-
dc.subject.keywordAuthorCOVID-19-
dc.subject.keywordAuthoreconomic impact-
dc.subject.keywordAuthornon-pharmaceutical intervention-
dc.subject.keywordAuthorprobabilistic programming-
dc.subject.keywordAuthorSEIRD model-
dc.subject.keywordAuthorsimulation-
Appears in Collections:
Pioneer Research Center for Mathematical and Computational Sciences(수리 및 계산과학 연구단) > 1. Journal Papers (저널논문)
Pioneer Research Center for Mathematical and Computational Sciences(수리 및 계산과학 연구단) > Data Science Group(데이터 사이언스 그룹) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse