BROWSE

ITEM VIEW & DOWNLOAD

Benzenehexol-based 2D MOF as high-performance electrocatalyst for oxygen reduction reaction

DC Field Value Language
dc.contributor.authorGao, Zhixiao-
dc.contributor.authorMa, Hao-
dc.contributor.authorYuan, Saifei-
dc.contributor.authorRen, Hao-
dc.contributor.authorGe, Zhencui-
dc.contributor.authorZhu, Houyu-
dc.contributor.authorGuo, Wenyue-
dc.contributor.authorFeng Ding-
dc.contributor.authorZhao, Wen-
dc.date.accessioned2022-08-10T22:00:10Z-
dc.date.available2022-08-10T22:00:10Z-
dc.date.created2022-08-01-
dc.date.issued2022-11-
dc.identifier.issn0169-4332-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/12173-
dc.description.abstract© 2022 Elsevier B.V.Two-dimensional (2D) conductive metal–organic frameworks (MOFs) were an emerging class of potential oxygen reduction reaction (ORR) electrocatalysts to replace platinum-containing electrode materials. Herein, by first-principles calculations, we systematically studied the structural stability, electronic properties and ORR catalytic activity of metal-hexahydroxybenzene nanosheets, M3(C6O6), M = 3d and 4d transition metals. Based on formation energy, phonon spectrum and ab-initio molecular dynamics analyses, eight monolayer M3(C6O6) (M = Cr, Mn, Fe, Co, Cu, Zn, Ru and Rh) show superior thermodynamic, kinetic and thermal stabilities. Further ORR catalytic activity evaluation shown Cu3(C6O6) and Rh3(C6O6) had promising applications in catalyzing ORR 4e- pathway, with limiting potentials 0.76 and 0.80 V, respectively. The linear relationship between integrated crystal orbital Hamilton population (ICOHP) and ΔGOH∗ explains the suitable adsorption energy of OH* on the catalyst, resulting in the excellent ORR activity of Cu3(C6O6) and Rh3(C6O6). Our study on M3(C6O6) provides references for the research of other 2D MOFs as ORR catalysts.-
dc.language영어-
dc.publisherElsevier B.V.-
dc.titleBenzenehexol-based 2D MOF as high-performance electrocatalyst for oxygen reduction reaction-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000868431000004-
dc.identifier.scopusid2-s2.0-85134676043-
dc.identifier.rimsid78674-
dc.contributor.affiliatedAuthorFeng Ding-
dc.identifier.doi10.1016/j.apsusc.2022.154187-
dc.identifier.bibliographicCitationApplied Surface Science, v.601-
dc.relation.isPartOfApplied Surface Science-
dc.citation.titleApplied Surface Science-
dc.citation.volume601-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Coatings & Films-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.subject.keywordPlusEVOLUTION-
dc.subject.keywordPlusDYNAMICS-
dc.subject.keywordPlusFE-
dc.subject.keywordAuthor2D conductive MOFs-
dc.subject.keywordAuthorCatalytic activity-
dc.subject.keywordAuthorElectronic properties-
dc.subject.keywordAuthorFirst-principles calculation-
dc.subject.keywordAuthorStructural stability-
Appears in Collections:
Center for Multidimensional Carbon Materials(다차원 탄소재료 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse