BROWSE

Related Scientist

David Barrie, Neil's photo.

David Barrie, Neil
순수물리이론 연구단
more info

ITEM VIEW & DOWNLOAD

Type II Seesaw leptogenesis

Cited 0 time in webofscience Cited 0 time in scopus
82 Viewed 0 Downloaded
Title
Type II Seesaw leptogenesis
Author(s)
Neil David Barrie; Chengcheng Han; Hitoshi Murayama
Publication Date
2022-05
Journal
JOURNAL OF HIGH ENERGY PHYSICS, no.5, pp.1 - 37
Publisher
SPRINGER
Abstract
The Type II Seesaw Mechanism provides a minimal framework to explain the neutrino masses involving the introduction of a single triplet Higgs to the Standard Model. However, this simple extension was believed to be unable to successfully explain the observed baryon asymmetry of the universe through Leptogenesis. In our previous work (Phys. Rev. Lett.128 (2022) 141801), we demonstrated that the triplet Higgs of the Type II Seesaw Mechanism alone can simultaneously generate the observed baryon asymmetry of the universe and the neutrino masses while playing a role in setting up Inflation. This is achievable with a triplet Higgs mass as low as 1 TeV, and predicts that the neutral component obtains a small vacuum expectation value v(Delta) < 10 keV. We find that our model has very rich phenomenology and can be tested by various terrestrial experiments as well as by astronomical observations. Particularly, we show that the successful parameter region may be probed at a future 100 TeV collider, upcoming lepton flavor violation experiments such as Mu3e, and neutrinoless double beta decay experiments. Additionally, the tensor-to-scalar ratio from the inflationary scenario will be probed by the LiteBIRD telescope, and observable isocurvature perturbations may be produced for some parameter choices. In this article, we present all the technical details of our calculations and further discussion of its phenomenological implications.
URI
https://pr.ibs.re.kr/handle/8788114/12044
DOI
10.1007/JHEP05(2022)160
ISSN
1126-6708
Appears in Collections:
Center for Fundamental Theory(순수물리이론 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse