BROWSE

Related Scientist

liping,ding's photo.

liping,ding
다차원탄소재료연구단
more info

ITEM VIEW & DOWNLOAD

Why Carbon Nanotubes Grow

DC Field Value Language
dc.contributor.authorLi Ping Ding-
dc.contributor.authorBen McLean-
dc.contributor.authorZiwei Xu-
dc.contributor.authorXiao Kong-
dc.contributor.authorDaniel Hedman-
dc.contributor.authorLu Qiu-
dc.contributor.authorPage, Alister J.-
dc.contributor.authorFeng Ding-
dc.date.accessioned2022-05-25T04:35:13Z-
dc.date.accessioned2022-05-25T04:35:13Z-
dc.date.available2022-05-25T04:35:13Z-
dc.date.available2022-05-25T04:35:13Z-
dc.date.created2022-04-18-
dc.date.issued2022-03-
dc.identifier.issn0002-7863-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/11461-
dc.description.abstract© 2022 American Chemical Society.Despite three decades of intense research efforts, the most fundamental question "why do carbon nanotubes grow?"remains unanswered. In fact, carbon nanotubes (CNTs) should not grow since the encapsulation of a catalyst with graphitic carbon is energetically more favorable than CNT growth in every aspect. Here, we answer this question using a theoretical model based on extensive first-principles and molecular dynamics calculations. We reveal a historically overlooked yet fundamental aspect of the CNT-catalyst interface, viz., that the interfacial energy of the CNT-catalyst edge is contact angle-dependent. The contact angle increases via graphitic cap lift-off, drastically decreasing the interfacial formation energy by up to 6-9 eV/nm, overcoming van der Waals cap-catalyst adhesion, and driving CNT growth. Mapping this remarkable and simple interplay allows us to understand, for the first time, why CNTs grow.-
dc.language영어-
dc.publisherAmerican Chemical Society-
dc.titleWhy Carbon Nanotubes Grow-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000799109400048-
dc.identifier.scopusid2-s2.0-85127436420-
dc.identifier.rimsid78052-
dc.contributor.affiliatedAuthorLi Ping Ding-
dc.contributor.affiliatedAuthorBen McLean-
dc.contributor.affiliatedAuthorXiao Kong-
dc.contributor.affiliatedAuthorDaniel Hedman-
dc.contributor.affiliatedAuthorLu Qiu-
dc.contributor.affiliatedAuthorFeng Ding-
dc.identifier.doi10.1021/jacs.2c00879-
dc.identifier.bibliographicCitationJournal of the American Chemical Society, v.144, no.12, pp.5606 - 5613-
dc.relation.isPartOfJournal of the American Chemical Society-
dc.citation.titleJournal of the American Chemical Society-
dc.citation.volume144-
dc.citation.number12-
dc.citation.startPage5606-
dc.citation.endPage5613-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.subject.keywordPlusCATALYST PARTICLE-
dc.subject.keywordPlusSIMULATION-
dc.subject.keywordPlusNUCLEATION-
dc.subject.keywordPlusSIZE-
dc.subject.keywordPlusDIAMETER-
dc.subject.keywordPlusDYNAMICS-
dc.subject.keywordPlusDRIVEN-
Appears in Collections:
Center for Multidimensional Carbon Materials(다차원 탄소재료 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse