Isolated and hybrid bilayer graphene quantum rings
DC Field | Value | Language |
---|---|---|
dc.contributor.author | M. Mirzakhani | - |
dc.contributor.author | Da, Costa D.R. | - |
dc.contributor.author | Peeters, F.M. | - |
dc.date.accessioned | 2022-05-25T04:35:06Z | - |
dc.date.accessioned | 2022-05-25T04:35:06Z | - |
dc.date.available | 2022-05-25T04:35:06Z | - |
dc.date.available | 2022-05-25T04:35:06Z | - |
dc.date.created | 2022-04-26 | - |
dc.date.issued | 2022-03 | - |
dc.identifier.issn | 2469-9950 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/11459 | - |
dc.description.abstract | © 2022 American Physical Society.Using the continuum model, we investigate the electronic properties of two types of bilayer graphene (BLG) quantum ring (QR) geometries: (i) An isolated BLG QR and (ii) a monolayer graphene (MLG) with a QR put on top of an infinite graphene sheet (hybrid BLG QR). Solving the Dirac-Weyl equation in the presence of a perpendicular magnetic field and applying the infinite mass boundary condition at the ring boundaries, we obtain analytical results for the energy levels and corresponding wave spinors for both structures. In the case of isolated BLG QR, we observe a sizable and magnetically tunable band gap which agrees with the tight-binding transport simulations. Our analytical results also show the intervalley symmetry EeK(m)=-EhK′(m) between the electron (e) and the hole (h) states (m is the angular momentum quantum number) for the energy spectrum of the isolated BLG QR. The presence of interface boundary in a hybrid BLG QR modifies drastically the energy levels as compared with that of an isolated BLG QR. Its energy levels are tunable from MLG dot to isolated BLG QR and to MLG Landau energy levels as the magnetic field is varied. Our predictions can be verified experimentally using different techniques such as by magnetotransport measurements. | - |
dc.language | 영어 | - |
dc.publisher | American Physical Society | - |
dc.title | Isolated and hybrid bilayer graphene quantum rings | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000801209300006 | - |
dc.identifier.scopusid | 2-s2.0-85127884451 | - |
dc.identifier.rimsid | 78071 | - |
dc.contributor.affiliatedAuthor | M. Mirzakhani | - |
dc.identifier.doi | 10.1103/PhysRevB.105.115430 | - |
dc.identifier.bibliographicCitation | Physical Review B, v.105, no.11 | - |
dc.relation.isPartOf | Physical Review B | - |
dc.citation.title | Physical Review B | - |
dc.citation.volume | 105 | - |
dc.citation.number | 11 | - |
dc.type.docType | Article | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalResearchArea | Physics | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Physics, Applied | - |
dc.relation.journalWebOfScienceCategory | Physics, Condensed Matter | - |