BROWSE

Related Scientist

kadota,kenji's photo.

kadota,kenji
순수물리이론연구단
more info

ITEM VIEW & DOWNLOAD

Probing ultra-light axion dark matter from 21 cm tomography using Convolutional Neural Networks

DC Field Value Language
dc.contributor.authorCristiano G. Sabiu-
dc.contributor.authorKenji Kadota-
dc.contributor.authorJacobo Asorey-
dc.contributor.authorInkyu Park-
dc.date.accessioned2022-03-04T09:37:46Z-
dc.date.available2022-03-04T09:37:46Z-
dc.date.created2022-02-08-
dc.date.issued2022-01-
dc.identifier.issn1475-7516-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/11206-
dc.description.abstract© 2022 IOP Publishing Ltd and Sissa Medialab.We present forecasts on the detectability of Ultra-light axion-like particles (ULAP) from future 21 cm radio observations around the epoch of reionization (EoR). We show that the axion as the dominant dark matter component has a significant impact on the reionization history due to the suppression of small scale density perturbations in the early universe. This behavior depends strongly on the mass of the axion particle. Using numerical simulations of the brightness temperature field of neutral hydrogen over a large redshift range, we construct a suite of training data. This data is used to train a convolutional neural network that can build a connection between the spatial structures of the brightness temperature field and the input axion mass directly. We construct mock observations of the future Square Kilometer Array survey, SKA1-Low, and find that even in the presence of realistic noise and resolution constraints, the network is still able to predict the input axion mass. We find that the axion mass can be recovered over a wide mass range with a precision of approximately 20%, and as the whole DM contribution, the axion can be detected using SKA1-Low at 68% if the axion mass is M X < 1.86 × 10-20 eV although this can decrease to M X < 5.25 × 10-21 eV if we relax our assumptions on the astrophysical modeling by treating those astrophysical parameters as nuisance parameters.-
dc.language영어-
dc.publisherIOP Publishing Ltd-
dc.titleProbing ultra-light axion dark matter from 21 cm tomography using Convolutional Neural Networks-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000751946700012-
dc.identifier.scopusid2-s2.0-85123711830-
dc.identifier.rimsid77199-
dc.contributor.affiliatedAuthorKenji Kadota-
dc.identifier.doi10.1088/1475-7516/2022/01/020-
dc.identifier.bibliographicCitationJournal of Cosmology and Astroparticle Physics, v.2022, no.1-
dc.relation.isPartOfJournal of Cosmology and Astroparticle Physics-
dc.citation.titleJournal of Cosmology and Astroparticle Physics-
dc.citation.volume2022-
dc.citation.number1-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaAstronomy & Astrophysics-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryAstronomy & Astrophysics-
dc.relation.journalWebOfScienceCategoryPhysics, Particles & Fields-
dc.subject.keywordAuthoraxions-
dc.subject.keywordAuthorcosmological parameters from LSS-
dc.subject.keywordAuthordark matter simulations-
Appears in Collections:
Center for Fundamental Theory(순수물리이론 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse