BROWSE

Related Scientist

ccp's photo.

ccp
기후물리연구단
more info

ITEM VIEW & DOWNLOAD

Spectral analysis of climate dynamics with operator-theoretic approaches

DC Field Value Language
dc.contributor.authorFroyland, Gary-
dc.contributor.authorGiannakis, Dimitrios-
dc.contributor.authorLintner, Benjamin R.-
dc.contributor.authorPike, Maxwell-
dc.contributor.authorJoanna Slawinska-
dc.date.accessioned2021-12-20T01:50:04Z-
dc.date.available2021-12-20T01:50:04Z-
dc.date.created2021-12-15-
dc.date.issued2021-11-12-
dc.identifier.issn2041-1723-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/10900-
dc.description.abstract© 2021, The Author(s).The Earth’s climate system is a classical example of a multiscale, multiphysics dynamical system with an extremely large number of active degrees of freedom, exhibiting variability on scales ranging from micrometers and seconds in cloud microphysics, to thousands of kilometers and centuries in ocean dynamics. Yet, despite this dynamical complexity, climate dynamics is known to exhibit coherent modes of variability. A primary example is the El Niño Southern Oscillation (ENSO), the dominant mode of interannual (3–5 yr) variability in the climate system. The objective and robust characterization of this and other important phenomena presents a long-standing challenge in Earth system science, the resolution of which would lead to improved scientific understanding and prediction of climate dynamics, as well as assessment of their impacts on human and natural systems. Here, we show that the spectral theory of dynamical systems, combined with techniques from data science, provides an effective means for extracting coherent modes of climate variability from high-dimensional model and observational data, requiring no frequency prefiltering, but recovering multiple timescales and their interactions. Lifecycle composites of ENSO are shown to improve upon results from conventional indices in terms of dynamical consistency and physical interpretability. In addition, the role of combination modes between ENSO and the annual cycle in ENSO diversity is elucidated.-
dc.language영어-
dc.publisherNature Research-
dc.titleSpectral analysis of climate dynamics with operator-theoretic approaches-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000718060500018-
dc.identifier.scopusid2-s2.0-85118981639-
dc.identifier.rimsid76898-
dc.contributor.affiliatedAuthorJoanna Slawinska-
dc.identifier.doi10.1038/s41467-021-26357-x-
dc.identifier.bibliographicCitationNature Communications, v.12, no.1-
dc.relation.isPartOfNature Communications-
dc.citation.titleNature Communications-
dc.citation.volume12-
dc.citation.number1-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.subject.keywordPlusINDO-PACIFIC VARIABILITY-
dc.subject.keywordPlusEL-NINO-
dc.subject.keywordPlusMODEL-REDUCTION-
dc.subject.keywordPlusAPPROXIMATION-
dc.subject.keywordPlusOSCILLATION-
dc.subject.keywordPlusENSO-
dc.subject.keywordPlusSYSTEMS-
dc.subject.keywordPlusMAPS-
dc.subject.keywordPlusATMOSPHERE-
dc.subject.keywordPlusASYMMETRY-
Appears in Collections:
Center for Climate Physics(기후물리 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse