BROWSE

Related Scientist

ahn,doosik's photo.

ahn,doosik
나노물질및화학반응연구단
more info

ITEM VIEW & DOWNLOAD

Ultrafast excited state relaxation dynamics in a heteroleptic Ir(iii) complex,: Fac -Ir(ppy)2(ppz), revealed by femtosecond X-ray transient absorption spectroscopy

Cited 0 time in webofscience Cited 0 time in scopus
376 Viewed 0 Downloaded
Title
Ultrafast excited state relaxation dynamics in a heteroleptic Ir(iii) complex,: Fac -Ir(ppy)2(ppz), revealed by femtosecond X-ray transient absorption spectroscopy
Author(s)
Jungkweon Choi; Ahn, Mina; Lee, Jae Hyuk; Doo-Sik Ahn; Hosung Ki; Oh, Inhwan; Ahn, Chi Woo; Choi, Eun Hyuk; Lee, Yunbeom; Lee, Seonggon; Kim, Jungmin; Cho, Dae Won; Wee, Kyung-Ryang; Hyotcherl Ihee
Publication Date
2021-06-21
Journal
Inorganic Chemistry Frontiers, v.8, no.12, pp.2987 - 2998
Publisher
Royal Society of Chemistry
Abstract
© 2021 the Partner Organisations.A typical metal complex has a central metal surrounded by multiple ligands, which greatly affect the properties of the whole complex. Although heteroleptic complexes often exhibit substantially different behaviors from homoleptic complexes, systematic studies to explain their origins have been rare. Of special importance is to understand why the heteroleptic metal complex shows a more complicated excited state relaxation dynamics than the homoleptic metal complex. To address this issue, we investigated the excited state relaxation dynamics of a heteroleptic Ir(iii) complex, fac-Ir(ppy)2(ppz), and two homoleptic Ir(iii) complexes, fac-Ir(ppy)3 and fac-Ir(ppz)3, using femtosecond X-ray transient absorption (fs-XTA) spectroscopy, ultrafast optical transient absorption (TA) spectroscopy, and DFT/TDDFT calculation. The data show that the ultrafast relaxation dynamics of ∼450 fs, which is significantly faster than those of previous Ir(iii) complexes with other ligands, is observed only in fac-Ir(ppy)2(ppz) but not in the homoleptic Ir(iii) complexes. Such dynamics observed for only heteroleptic Ir(iii) complexes must originate from the heteroleptic character, and naturally, the inter-ligand energy transfer between two different types of ligands has been suggested to explain the fast dynamics. Both fs-XTA and TA data, however, favor the assignment of the ultrafast dynamics of ∼450 fs to the internal conversion (IC) process from the ppz-localized 3MLCT to the ppy-localized 3MLCT. The DFT/TDDFT calculations support that the abnormally fast IC for fac-Ir(ppy)2(ppz) is due to a large nonadiabatic coupling and the small energy gap between the two states.
URI
https://pr.ibs.re.kr/handle/8788114/10020
DOI
10.1039/d0qi01510e
ISSN
2052-1553
Appears in Collections:
Center for Nanomaterials and Chemical Reactions(나노물질 및 화학반응 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse