BROWSE

Related Scientist

corels's photo.

corels
초강력레이저과학연구단
more info

ITEM VIEW & DOWNLOAD

Tabletop laser-driven gamma-ray source with nanostructured double-layer target

DC Field Value Language
dc.contributor.authorTaiwu W. Huang-
dc.contributor.authorChul min Kim-
dc.contributor.authorZhou, CT-
dc.contributor.authorC.M Ryu-
dc.contributor.authorNakajima, K-
dc.contributor.authorRuan, SC-
dc.contributor.authorNam, CH-
dc.date.available2019-01-03T05:30:43Z-
dc.date.created2018-10-15-
dc.date.issued2018-11-
dc.identifier.issn0741-3335-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/5069-
dc.description.abstractLaser-driven gamma-ray source potentially offers a compact, cost-effective, ultra-short, and ultra-bright alternative to conventional gamma-ray sources based on large-scale particle accelerators. Based on the laser-driven approach, we use multidimensional particle-in-cell simulations to demonstrate that a nanostructured double-layer target, which consists of a nanostructured foam coated on top of a metal substrate, can absorb laser energy into high-energy electrons in the nanostructured foam, and then efficiently convert it into copious gamma photons via the nonlinear Compton scattering process enabled by the solid-density substrate, which acts as a plasma mirror to reflect the laser pulse. The effects of different nanostructures in the foam target and the oblique laser incidence are presented. It is shown that the conversion efficiency of gamma photons increases when the size of nanoparticles decreases or the filling factor of nanoparticles increases in nanostructured foam target, but decreases when the laser incidence angle increases. At realistic conditions with nanostructured foam and non-normal incidence, the double-layer target still exhibits an unprecedentedly high conversion efficiency in high-energy gamma-ray production due to the laser reflection by the plasma mirror, which can be two and even three orders of magnitude higher than that of the single-layer target without the substrate using currently available lasers with intensity of 10(21) W/cm(2). © 2018 IOP Publishing Ltd-
dc.description.uri1-
dc.language영어-
dc.publisherIOP PUBLISHING LTD-
dc.subjectlaser-driven gamma-ray source-
dc.subjectnanostructured double-layer target-
dc.subjectdirect laser acceleration-
dc.subjectrelativistic self-focusing-
dc.subjectnonlinear Compton scattering-
dc.titleTabletop laser-driven gamma-ray source with nanostructured double-layer target-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000445123200001-
dc.identifier.scopusid2-s2.0-85055554783-
dc.identifier.rimsid65712-
dc.contributor.affiliatedAuthorTaiwu W. Huang-
dc.contributor.affiliatedAuthorChul min Kim-
dc.contributor.affiliatedAuthorC.M Ryu-
dc.contributor.affiliatedAuthorNakajima, K-
dc.contributor.affiliatedAuthorNam, CH-
dc.identifier.doi10.1088/1361-6587/aadbeb-
dc.identifier.bibliographicCitationPLASMA PHYSICS AND CONTROLLED FUSION, v.60, no.11, pp.115006-
dc.citation.titlePLASMA PHYSICS AND CONTROLLED FUSION-
dc.citation.volume60-
dc.citation.number11-
dc.citation.startPage115006-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordPlusPLASMA-
dc.subject.keywordPlusDENSITY-
dc.subject.keywordPlusACCELERATOR-
dc.subject.keywordPlusEMISSION-
dc.subject.keywordPlusCONE-
dc.subject.keywordAuthorlaser-driven gamma-ray source-
dc.subject.keywordAuthornanostructured double-layer target-
dc.subject.keywordAuthordirect laser acceleration-
dc.subject.keywordAuthorrelativistic self-focusing-
dc.subject.keywordAuthornonlinear Compton scattering-
Appears in Collections:
Center for Relativistic Laser Science(초강력 레이저과학 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
Tabletop laser-driven gamma-ray source with nanostructured double-layer target.pdfDownload

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse