BROWSE

Related Scientist

cncr's photo.

cncr
나노물질및화학반응연구단
more info

ITEM VIEW & DOWNLOAD

Plasmonic Hot Hole-Driven Water Splitting on Au Nanoprisms/P-Type GaN

DC Field Value Language
dc.contributor.authorKyoungjae Song-
dc.contributor.authorHyunhwa Lee-
dc.contributor.authorMoonsang Lee-
dc.contributor.authorJeong Young Park-
dc.date.accessioned2021-04-27T01:50:10Z-
dc.date.accessioned2021-04-27T01:50:10Z-
dc.date.available2021-04-27T01:50:10Z-
dc.date.available2021-04-27T01:50:10Z-
dc.date.created2021-04-21-
dc.date.issued2021-04-09-
dc.identifier.issn2380-8195-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/9547-
dc.description.abstract© 2021 American Chemical Society. While hot carrier generation from surface plasmon decay at the surface of a nanostructured metal offers a distinctive concept for boosting photoelectrocatalytic reactions, the nature of the plasmonic hot hole transfer based on the sizes of metallic nanomaterials has not been investigated in depth experimentally. Here, we report direct photoelectrochemical (PEC) experimental proof that the injection of plasmonic hot holes depends on the size of the metallic nanostructures. PEC results clearly indicate that a plasmonic template with smaller Au nanoprisms exhibits higher external and internal quantum efficiencies, leading to a significant enhancement of both oxygen evolution and hydrogen evolution reactions. We verified that these outcomes stemmed from the enhanced hot hole generation with higher energy and transfer efficiency driven by enhanced field confinement. These findings provide a facile strategy by which futuristic photocatalysis and solar energy conversion applications based on plasmonic hot holes can be expedited.-
dc.language영어-
dc.publisherAmerican Chemical Society-
dc.titlePlasmonic Hot Hole-Driven Water Splitting on Au Nanoprisms/P-Type GaN-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000639063800014-
dc.identifier.scopusid2-s2.0-85103773016-
dc.identifier.rimsid75367-
dc.contributor.affiliatedAuthorKyoungjae Song-
dc.contributor.affiliatedAuthorHyunhwa Lee-
dc.contributor.affiliatedAuthorJeong Young Park-
dc.identifier.doi10.1021/acsenergylett.1c00366-
dc.identifier.bibliographicCitationACS Energy Letters, v.6, no.4, pp.1333 - 1339-
dc.relation.isPartOfACS Energy Letters-
dc.citation.titleACS Energy Letters-
dc.citation.volume6-
dc.citation.number4-
dc.citation.startPage1333-
dc.citation.endPage1339-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusHYDROGEN EVOLUTION REACTION-
dc.subject.keywordPlusRESONANCE-
dc.subject.keywordPlusELECTRONS-
dc.subject.keywordPlusABSORPTION-
dc.subject.keywordPlusGENERATION-
dc.subject.keywordPlusNANOSHEETS-
dc.subject.keywordPlusCHEMISTRY-
dc.subject.keywordPlusCARRIERS-
dc.subject.keywordPlusQUANTUM-
dc.subject.keywordPlusSHAPE-
Appears in Collections:
Center for Nanomaterials and Chemical Reactions(나노물질 및 화학반응 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse