Grossberg-Karshon twisted cubes and hesitant jumping walk avoidance
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Eunjeong Lee | - |
dc.date.accessioned | 2020-12-22T02:48:24Z | - |
dc.date.accessioned | 2020-12-22T02:48:24Z | - |
dc.date.available | 2020-12-22T02:48:24Z | - |
dc.date.available | 2020-12-22T02:48:24Z | - |
dc.date.created | 2020-10-16 | - |
dc.date.issued | 2020-08 | - |
dc.identifier.issn | 1077-8926 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/7693 | - |
dc.description.abstract | ⓒ The author. Let G be a complex simply-laced semisimple algebraic group of rank r and B a Borel subgroup. Let i is an element of [r](n) be a word and let l = (l(1), ...,l(n)) be a sequence of non-negative integers. Grossberg and Karshon introduced a virtual lattice polytope associated to i and l called a twisted cube, whose lattice points encode the character of a B-representation. More precisely, lattice points in the twisted cube, counted with sign according to a certain density function, yield the character of the generalized Dernazure module determined by i and l. In a recent work, the author and Harada described precisely when the Grossberg-Karshon twisted cube is untwisted, i.e., the twisted cube is a closed convex polytope, in the situation when the integer sequence l comes from a weight lambda for G. However, not every integer sequence l comes from a weight for G. In the present paper, we interpret the untwistedness of Grossberg Karshon twisted cubes associated with any word i and any integer sequence t using the combinatorics of i and l. Indeed, we prove that the Grossberg-Karshon twisted cube is untwisted precisely when i is hesitant-jumping-l-walk-avoiding | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | ELECTRONIC JOURNAL OF COMBINATORICS | - |
dc.subject | BOTT-SAMELSON VARIETIES | - |
dc.subject | NEWTON-OKOUNKOV BODIES | - |
dc.title | Grossberg-Karshon twisted cubes and hesitant jumping walk avoidance | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000565614000001 | - |
dc.identifier.scopusid | 2-s2.0-85090542414 | - |
dc.identifier.rimsid | 73069 | - |
dc.contributor.affiliatedAuthor | Eunjeong Lee | - |
dc.identifier.doi | 10.37236/9278 | - |
dc.identifier.bibliographicCitation | ELECTRONIC JOURNAL OF COMBINATORICS, v.27, no.3, pp.3.34 | - |
dc.citation.title | ELECTRONIC JOURNAL OF COMBINATORICS | - |
dc.citation.volume | 27 | - |
dc.citation.number | 3 | - |
dc.citation.startPage | 3.34 | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordPlus | BOTT-SAMELSON VARIETIES | - |
dc.subject.keywordPlus | NEWTON-OKOUNKOV BODIES | - |