BROWSE

Related Scientist

lee,eunjeong's photo.

lee,eunjeong
기하학수리물리연구단
more info

ITEM VIEW & DOWNLOAD

Grossberg-Karshon twisted cubes and hesitant jumping walk avoidance

DC Field Value Language
dc.contributor.authorEunjeong Lee-
dc.date.accessioned2020-12-22T02:48:24Z-
dc.date.accessioned2020-12-22T02:48:24Z-
dc.date.available2020-12-22T02:48:24Z-
dc.date.available2020-12-22T02:48:24Z-
dc.date.created2020-10-16-
dc.date.issued2020-08-
dc.identifier.issn1077-8926-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/7693-
dc.description.abstractⓒ The author. Let G be a complex simply-laced semisimple algebraic group of rank r and B a Borel subgroup. Let i is an element of [r](n) be a word and let l = (l(1), ...,l(n)) be a sequence of non-negative integers. Grossberg and Karshon introduced a virtual lattice polytope associated to i and l called a twisted cube, whose lattice points encode the character of a B-representation. More precisely, lattice points in the twisted cube, counted with sign according to a certain density function, yield the character of the generalized Dernazure module determined by i and l. In a recent work, the author and Harada described precisely when the Grossberg-Karshon twisted cube is untwisted, i.e., the twisted cube is a closed convex polytope, in the situation when the integer sequence l comes from a weight lambda for G. However, not every integer sequence l comes from a weight for G. In the present paper, we interpret the untwistedness of Grossberg Karshon twisted cubes associated with any word i and any integer sequence t using the combinatorics of i and l. Indeed, we prove that the Grossberg-Karshon twisted cube is untwisted precisely when i is hesitant-jumping-l-walk-avoiding-
dc.description.uri1-
dc.language영어-
dc.publisherELECTRONIC JOURNAL OF COMBINATORICS-
dc.subjectBOTT-SAMELSON VARIETIES-
dc.subjectNEWTON-OKOUNKOV BODIES-
dc.titleGrossberg-Karshon twisted cubes and hesitant jumping walk avoidance-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000565614000001-
dc.identifier.scopusid2-s2.0-85090542414-
dc.identifier.rimsid73069-
dc.contributor.affiliatedAuthorEunjeong Lee-
dc.identifier.doi10.37236/9278-
dc.identifier.bibliographicCitationELECTRONIC JOURNAL OF COMBINATORICS, v.27, no.3, pp.3.34-
dc.citation.titleELECTRONIC JOURNAL OF COMBINATORICS-
dc.citation.volume27-
dc.citation.number3-
dc.citation.startPage3.34-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordPlusBOTT-SAMELSON VARIETIES-
dc.subject.keywordPlusNEWTON-OKOUNKOV BODIES-
Appears in Collections:
Center for Geometry and Physics(기하학 수리물리 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse