Hamiltonian circle action with self-indexing moment map
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yunhyung Cho | - |
dc.contributor.author | Kim M.K. | - |
dc.date.available | 2016-10-06T06:36:08Z | - |
dc.date.created | 2016-08-19 | - |
dc.date.issued | 2016-07 | - |
dc.identifier.issn | 1073-2780 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/2831 | - |
dc.description.abstract | Let (M,ω) be a 2n-dimensional closed symplectic manifold equipped with a Hamiltonian circle action with only isolated fixed points, and let μ : M → ℝ be a moment map. Then it is well-known that μ is a Morse function whose critical point set coincides with the fixed point set MS1. Let ∧2k be the set of all fixed points of Morse index 2k. In this paper, we will show that if μ is constant on ∧2k for each k ≤ n, then (M,ω) satisfies the hard Lefschetz property. In particular, if (M,ω) admits a self-indexing moment map, i.e. μ(z) = 2k for every k ≤ n and z ∈∧2k, then (M,ω) satisfies the hard Lefschetz property | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | INT PRESS BOSTON | - |
dc.title | Hamiltonian circle action with self-indexing moment map | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000388457200008 | - |
dc.identifier.scopusid | 2-s2.0-84978906735 | - |
dc.identifier.rimsid | 56330 | ko |
dc.date.tcdate | 2018-10-01 | - |
dc.contributor.affiliatedAuthor | Yunhyung Cho | - |
dc.identifier.doi | 10.4310/MRL.2016.v23.n3.a8 | - |
dc.identifier.bibliographicCitation | MATHEMATICAL RESEARCH LETTERS, v.23, no.3, pp.719 - 732 | - |
dc.citation.title | MATHEMATICAL RESEARCH LETTERS | - |
dc.citation.volume | 23 | - |
dc.citation.number | 3 | - |
dc.citation.startPage | 719 | - |
dc.citation.endPage | 732 | - |
dc.date.scptcdate | 2018-10-01 | - |
dc.description.scptc | 0 | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |