BROWSE

Related Scientist

cho,yunhyung's photo.

cho,yunhyung
기하학수리물리연구단
more info

ITEM VIEW & DOWNLOAD

Unimodality of Betti numbers for Hamiltonian circle actions with index-increasing moment Maps

DC Field Value Language
dc.contributor.authorYunhyung Cho-
dc.date.available2016-06-30T06:52:45Z-
dc.date.created2016-06-20-
dc.date.issued2016-05-
dc.identifier.issn0129-167X-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/2585-
dc.description.abstractThe unimodality conjecture posed by Tolman in [L. Jeffrey, T. Holm, Y. Karshon, E. Lerman and E. Meinrenken, Moment maps in various geometries, http://www.birs.ca/workshops/2005/05w5072/report05w5072.pdf] states that if (M,ω) is a 2n-dimensional smooth compact symplectic manifold equipped with a Hamiltonian circle action with only isolated fixed points, then the sequence of Betti numbers {b0(M),b2(M),...,b2n(M)} is unimodal, i.e. bi(M) ≤ bi+2(M) for every i < n. Recently, the author and Kim [Y. Cho and M. Kim, Unimodality of the Betti numbers for Hamiltonian circle action with isolated fixed points, Math. Res. Lett. 21(4) (2014) 691-696] proved that the unimodality holds in eight-dimensional case by using equivariant cohomology theory. In this paper, we generalize the idea in [Y. Cho and M. Kim, Unimodality of the Betti numbers for Hamiltonian circle action with isolated fixed points, Math. Res. Lett. 21(4) (2014) 691-696] to an arbitrary dimensional case. We prove the conjecture in arbitrary dimension under the assumption that the moment map H : M → R is index-increasing, which means that ind(p) < ind(q) implies H(p) < H(q) for every pair of critical points p and q of H, where ind(p) is the Morse index of p with respect to H. © World Scientific Publishing Company-
dc.description.uri1-
dc.language영어-
dc.publisherWORLD SCIENTIFIC PUBL CO PTE LTD-
dc.subjectequivariant cohomology-
dc.subjectHamiltonian action-
dc.subjectSymplectic geometry-
dc.subjectunimodality-
dc.titleUnimodality of Betti numbers for Hamiltonian circle actions with index-increasing moment Maps-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid000376588300006-
dc.identifier.scopusid2-s2.0-84966693049-
dc.identifier.rimsid55843-
dc.date.tcdate2018-10-01-
dc.contributor.affiliatedAuthorYunhyung Cho-
dc.identifier.doi10.1142/S0129167X16500439-
dc.identifier.bibliographicCitationINTERNATIONAL JOURNAL OF MATHEMATICS, v.27, no.5, pp.1650043-
dc.citation.titleINTERNATIONAL JOURNAL OF MATHEMATICS-
dc.citation.volume27-
dc.citation.number5-
dc.citation.startPage1650043-
dc.date.scptcdate2018-10-01-
dc.description.wostc1-
dc.description.scptc1-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordAuthorequivariant cohomology-
dc.subject.keywordAuthorHamiltonian action-
dc.subject.keywordAuthorSymplectic geometry-
dc.subject.keywordAuthorunimodality-
Appears in Collections:
Center for Geometry and Physics(기하학 수리물리 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
2016_YHC_Unimodality of the Betti numbers for Hamiltonian circle actions with index-increasing moment maps.pdfDownload

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse