Unimodality of Betti numbers for Hamiltonian circle actions with index-increasing moment Maps
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yunhyung Cho | - |
dc.date.available | 2016-06-30T06:52:45Z | - |
dc.date.created | 2016-06-20 | - |
dc.date.issued | 2016-05 | - |
dc.identifier.issn | 0129-167X | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/2585 | - |
dc.description.abstract | The unimodality conjecture posed by Tolman in [L. Jeffrey, T. Holm, Y. Karshon, E. Lerman and E. Meinrenken, Moment maps in various geometries, http://www.birs.ca/workshops/2005/05w5072/report05w5072.pdf] states that if (M,ω) is a 2n-dimensional smooth compact symplectic manifold equipped with a Hamiltonian circle action with only isolated fixed points, then the sequence of Betti numbers {b0(M),b2(M),...,b2n(M)} is unimodal, i.e. bi(M) ≤ bi+2(M) for every i < n. Recently, the author and Kim [Y. Cho and M. Kim, Unimodality of the Betti numbers for Hamiltonian circle action with isolated fixed points, Math. Res. Lett. 21(4) (2014) 691-696] proved that the unimodality holds in eight-dimensional case by using equivariant cohomology theory. In this paper, we generalize the idea in [Y. Cho and M. Kim, Unimodality of the Betti numbers for Hamiltonian circle action with isolated fixed points, Math. Res. Lett. 21(4) (2014) 691-696] to an arbitrary dimensional case. We prove the conjecture in arbitrary dimension under the assumption that the moment map H : M → R is index-increasing, which means that ind(p) < ind(q) implies H(p) < H(q) for every pair of critical points p and q of H, where ind(p) is the Morse index of p with respect to H. © World Scientific Publishing Company | - |
dc.description.uri | 1 | - |
dc.language | 영어 | - |
dc.publisher | WORLD SCIENTIFIC PUBL CO PTE LTD | - |
dc.subject | equivariant cohomology | - |
dc.subject | Hamiltonian action | - |
dc.subject | Symplectic geometry | - |
dc.subject | unimodality | - |
dc.title | Unimodality of Betti numbers for Hamiltonian circle actions with index-increasing moment Maps | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 000376588300006 | - |
dc.identifier.scopusid | 2-s2.0-84966693049 | - |
dc.identifier.rimsid | 55843 | - |
dc.date.tcdate | 2018-10-01 | - |
dc.contributor.affiliatedAuthor | Yunhyung Cho | - |
dc.identifier.doi | 10.1142/S0129167X16500439 | - |
dc.identifier.bibliographicCitation | INTERNATIONAL JOURNAL OF MATHEMATICS, v.27, no.5, pp.1650043 | - |
dc.citation.title | INTERNATIONAL JOURNAL OF MATHEMATICS | - |
dc.citation.volume | 27 | - |
dc.citation.number | 5 | - |
dc.citation.startPage | 1650043 | - |
dc.date.scptcdate | 2018-10-01 | - |
dc.description.wostc | 1 | - |
dc.description.scptc | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordAuthor | equivariant cohomology | - |
dc.subject.keywordAuthor | Hamiltonian action | - |
dc.subject.keywordAuthor | Symplectic geometry | - |
dc.subject.keywordAuthor | unimodality | - |