BROWSE

Related Scientist

Researcher

박명훈
순수물리이론 연구단
more info

Using sorted invariant mass variables to evade combinatorial ambiguities in cascade decays

DC Field Value Language
dc.contributor.authorKim D.-
dc.contributor.authorMatchev K.T.-
dc.contributor.authorMyeonghun Park-
dc.date.available2016-05-24T14:17:36Z-
dc.date.created2016-05-17-
dc.date.issued2016-02-
dc.identifier.issn1029-8479-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/2506-
dc.description.abstractAbstract: The classic method for mass determination in a SUSY-like cascade decay chain relies on measurements of the kinematic endpoints in the invariant mass distributions of suitable collections of visible decay products. However, the procedure is complicated by combinatorial ambiguities: e.g., the visible final state particles may be indistinguishable (as in the case of QCD jets), or one may not know the exact order in which they are emitted along the decay chain. In order to avoid such combinatorial ambiguities, we propose to treat the final state particles fully democratically and consider the sorted set of the invariant masses of all possible partitions of the visible particles in the decay chain. In particular, for a decay to N visible particles, one considers the sorted sets of all possible n-body invariant mass combinations (2 ≤ n ≤ N) and determines the kinematic endpoint m(n,r) max of the distribution of the r-th largest n-body invariant mass m(n,r) for each possible value of n and r. For the classic example of a squark decay in supersymmetry, we provide analytical formulas for the interpretation of these endpoints in terms of the underlying physical masses. We point out that these measurements can be used to determine the structure of the decay topology, e.g., the number and position of intermediate on-shell resonances. © 2016, The Author(s)-
dc.languageENG-
dc.titleUsing sorted invariant mass variables to evade combinatorial ambiguities in cascade decays-
dc.typeArticle-
dc.type.rimsA-
dc.identifier.wosid000370821700001-
dc.identifier.scopusid2-s2.0-84963812906-
dc.description.wostc8-
dc.date.tcdate2018-10-01-
dc.date.scptcdate2018-10-01-
dc.subject.keywordDeep Inelastic Scattering (Phenomenology)-
dc.contributor.affiliatedAuthorMyeonghun Park-
dc.identifier.bibliographicCitationJournal of High Energy Physics, v.2016, no.2, pp.129 --
dc.description.scptc8-
Appears in Collections:
Center for Fundamental Theory(순수물리이론 연구단) > Journal Papers (저널논문)
Files in This Item:
2016_Using sorted invariant mass variables to evade combinatorial ambiguities in cascade decays.pdfDownload

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse