A half-integral Erdős-Pósa theorem for directed odd cycles
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kawarabayashi, Ken-ichi | - |
dc.contributor.author | Kreutzer, Stephan | - |
dc.contributor.author | O-joung Kwon | - |
dc.contributor.author | Xie, Qiqin | - |
dc.date.accessioned | 2025-01-16T06:30:00Z | - |
dc.date.available | 2025-01-16T06:30:00Z | - |
dc.date.created | 2025-01-13 | - |
dc.date.issued | 2025-05 | - |
dc.identifier.issn | 0095-8956 | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/16197 | - |
dc.description.abstract | We prove that there exists a function f:N→R such that every directed graph G contains either k directed odd cycles where every vertex of G is contained in at most two of them, or a set of at most f(k) vertices meeting all directed odd cycles. We give a polynomial-time algorithm for fixed k which outputs one of the two outcomes. This extends the half-integral Erdős-Pósa theorem for undirected odd cycles by Reed [Combinatorica 1999] to directed graphs. © 2024 Elsevier Inc. | - |
dc.language | 영어 | - |
dc.publisher | Academic Press | - |
dc.title | A half-integral Erdős-Pósa theorem for directed odd cycles | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.scopusid | 2-s2.0-85214102294 | - |
dc.identifier.rimsid | 84882 | - |
dc.contributor.affiliatedAuthor | O-joung Kwon | - |
dc.identifier.doi | 10.1016/j.jctb.2024.12.008 | - |
dc.identifier.bibliographicCitation | Journal of Combinatorial Theory. Series B, v.172, pp.115 - 145 | - |
dc.relation.isPartOf | Journal of Combinatorial Theory. Series B | - |
dc.citation.title | Journal of Combinatorial Theory. Series B | - |
dc.citation.volume | 172 | - |
dc.citation.startPage | 115 | - |
dc.citation.endPage | 145 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordAuthor | Directed odd cycles | - |
dc.subject.keywordAuthor | Erdős-Pósa property | - |