BROWSE

Related Scientist

hyeontae,jo's photo.

hyeontae,jo
의생명수학그룹
more info

ITEM VIEW & DOWNLOAD

Data-driven shortened Insomnia Severity Index (ISI): a machine learning approach

DC Field Value Language
dc.contributor.authorHyeontae Jo-
dc.contributor.authorLim, Myna-
dc.contributor.authorJeon, Hong Jun-
dc.contributor.authorAhn, Junseok-
dc.contributor.authorSaebom Jeon-
dc.contributor.authorJae Kyoung Kim-
dc.contributor.authorChung, Seockhoon-
dc.date.accessioned2024-12-12T07:32:17Z-
dc.date.available2024-12-12T07:32:17Z-
dc.date.created2024-05-07-
dc.date.issued2024-08-
dc.identifier.issn1520-9512-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/15756-
dc.description.abstractBackgroundThe Insomnia Severity Index (ISI) is a widely used questionnaire with seven items for identifying the risk of insomnia disorder. Although the ISI is still short, more shortened versions are emerging for repeated monitoring in routine clinical settings. In this study, we aimed to develop a data-driven shortened version of the ISI that accurately predicts the severity level of insomnia disorder.MethodsWe collected a sample of 800 responses from the EMBRAIN survey system. Based on the responses, seven items were grouped based on the similarity of their response using exploratory factor analysis (EFA). The most representative item within each group was selected by using eXtreme Gradient Boosting (XGBoost).ResultsBased on the selected three key items, maintenance of sleep, interference with daily function, and concerns about sleep problems, we developed a data-driven shortened questionnaire of ISI, ISI-3 m (machine learning). ISI-3 m achieved the highest coefficient of determination (R2=0.910\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}<^>{2}=0.910$$\end{document}) for the ISI score prediction task and the accuracy of 0.965, precision of 0.841, and recall of 0.838 for the multiclass-classification task, outperforming four previous versions of the shortened ISI.ConclusionAs ISI-3 m is a highly accurate shortened version of the ISI, it allows clinicians to efficiently screen for insomnia and observe variations in the condition throughout the treatment process. Furthermore, the framework based on the combination of EFA and XGBoost developed in this study can be utilized to develop data-driven shortened versions of the other questionnaires.-
dc.language영어-
dc.publisherThieme Medical Publishers-
dc.titleData-driven shortened Insomnia Severity Index (ISI): a machine learning approach-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid001209530900001-
dc.identifier.scopusid2-s2.0-85191780768-
dc.identifier.rimsid83023-
dc.contributor.affiliatedAuthorHyeontae Jo-
dc.contributor.affiliatedAuthorSaebom Jeon-
dc.contributor.affiliatedAuthorJae Kyoung Kim-
dc.identifier.doi10.1007/s11325-024-03037-w-
dc.identifier.bibliographicCitationSleep and Breathing, v.28, pp.1819 - 1830-
dc.relation.isPartOfSleep and Breathing-
dc.citation.titleSleep and Breathing-
dc.citation.volume28-
dc.citation.startPage1819-
dc.citation.endPage1830-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryClinical Neurology-
dc.relation.journalWebOfScienceCategoryRespiratory System-
dc.subject.keywordPlusVALIDATION-
dc.subject.keywordPlusSCALE-
dc.subject.keywordAuthorInsomnia-
dc.subject.keywordAuthorInsomnia Severity Index-
dc.subject.keywordAuthorShortened questionnaires-
dc.subject.keywordAuthorMachine-Learning-
dc.subject.keywordAuthorExploratory factor analysis-
dc.subject.keywordAuthorXGBoost-
Appears in Collections:
Pioneer Research Center for Mathematical and Computational Sciences(수리 및 계산과학 연구단) > Biomedical Mathematics Group(의생명 수학 그룹) > 1. Journal Papers (저널논문)
Pioneer Research Center for Mathematical and Computational Sciences(수리 및 계산과학 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse