BROWSE

ITEM VIEW & DOWNLOAD

An operator splitting method for the Cahn-Hilliard equation on nonuniform grids

DC Field Value Language
dc.contributor.authorLee, Gyeonggyu-
dc.contributor.authorKwak, Soobin-
dc.contributor.authorChoi, Yongho-
dc.contributor.authorSeunggyu Lee-
dc.contributor.authorKang, Ungyoon-
dc.contributor.authorHam, Seokjun-
dc.contributor.authorKim, Junseok-
dc.date.accessioned2024-12-12T07:32:05Z-
dc.date.available2024-12-12T07:32:05Z-
dc.date.created2024-06-24-
dc.date.issued2024-08-
dc.identifier.issn0898-1221-
dc.identifier.urihttps://pr.ibs.re.kr/handle/8788114/15751-
dc.description.abstractIn this study, we present an operator splitting method (OSM) for the Cahn-Hilliard (CH) equation on a nonuniform mesh. The CH equation is a fourth -order partial differential equation that models phase separation phenomena in binary mixtures. Because the CH equation is applied in various scientific fields, numerous numerical methods have been developed to enhance the computational efficiency and accuracy. In this work, we consider a nonuniform mesh to improve spatial efficiency. To solve the CH equation in two-dimensional (2D) space on a nonuniform mesh, we consider the linear stabilized splitting (LSS) scheme along with the OSM. The LSS scheme is an unconditionally energy gradient stable method. To construct a simple numerical scheme, we consider the OSM in two-dimensional space. We validate that the proposed scheme satisfies the mass -preserving property. Furthermore, we conduct numerical experiments to demonstrate the efficiency and various properties of the proposed scheme.-
dc.language영어-
dc.publisherPergamon Press Ltd.-
dc.titleAn operator splitting method for the Cahn-Hilliard equation on nonuniform grids-
dc.typeArticle-
dc.type.rimsART-
dc.identifier.wosid001245006400001-
dc.identifier.scopusid2-s2.0-85193905603-
dc.identifier.rimsid83330-
dc.contributor.affiliatedAuthorSeunggyu Lee-
dc.identifier.doi10.1016/j.camwa.2024.05.021-
dc.identifier.bibliographicCitationComputers and Mathematics with Applications, v.167, pp.207 - 216-
dc.relation.isPartOfComputers and Mathematics with Applications-
dc.citation.titleComputers and Mathematics with Applications-
dc.citation.volume167-
dc.citation.startPage207-
dc.citation.endPage216-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryMathematics, Applied-
dc.subject.keywordPlus3-DIMENSIONAL VOLUME RECONSTRUCTION-
dc.subject.keywordPlusFINITE-DIFFERENCE SCHEME-
dc.subject.keywordPlusALLEN-CAHN-
dc.subject.keywordPlusENERGY-
dc.subject.keywordAuthorCahn-Hilliard equation-
dc.subject.keywordAuthorPhase separation-
dc.subject.keywordAuthorNonuniform grids-
Appears in Collections:
Pioneer Research Center for Mathematical and Computational Sciences(수리 및 계산과학 연구단) > 1. Journal Papers (저널논문)
Files in This Item:
There are no files associated with this item.

qrcode

  • facebook

    twitter

  • Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse