Kähler–Einstein metrics on smooth Fano toroidal symmetric varieties of type AIII
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hong, Kyusik | - |
dc.contributor.author | DongSeon Hwang | - |
dc.contributor.author | Park, Kyeong-Dong | - |
dc.date.accessioned | 2024-06-18T02:30:14Z | - |
dc.date.available | 2024-06-18T02:30:14Z | - |
dc.date.created | 2024-04-22 | - |
dc.date.issued | 2024 | - |
dc.identifier.issn | 0129-167X | - |
dc.identifier.uri | https://pr.ibs.re.kr/handle/8788114/15273 | - |
dc.description.abstract | The wonderful compactification Xm of a symmetric homogeneous space of type AIII(2, m) for each m ≥ 4 is Fano, and its blowup Ym along the unique closed orbit is Fano if m ≥ 5 and Calabi–Yau if m = 4. Using a combinatorial criterion for K-polystability of smooth Fano spherical varieties obtained by Delcroix, we prove that Xm admits a Kähler–Einstein metric for each m ≥ 4 and Ym admits a Kähler–Einstein metric if and only if m = 4, 5. © World Scientific Publishing Company. | - |
dc.language | 영어 | - |
dc.publisher | World Scientific Publishing Co | - |
dc.title | Kähler–Einstein metrics on smooth Fano toroidal symmetric varieties of type AIII | - |
dc.type | Article | - |
dc.type.rims | ART | - |
dc.identifier.wosid | 001200340200001 | - |
dc.identifier.scopusid | 2-s2.0-85190524296 | - |
dc.identifier.rimsid | 82966 | - |
dc.contributor.affiliatedAuthor | DongSeon Hwang | - |
dc.identifier.doi | 10.1142/S0129167X2450023X | - |
dc.identifier.bibliographicCitation | International Journal of Mathematics, v.35, no.7 | - |
dc.relation.isPartOf | International Journal of Mathematics | - |
dc.citation.title | International Journal of Mathematics | - |
dc.citation.volume | 35 | - |
dc.citation.number | 7 | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordAuthor | greatest Ricci lower bound | - |
dc.subject.keywordAuthor | spherical variety | - |
dc.subject.keywordAuthor | Kähler–Einstein metric | - |
dc.subject.keywordAuthor | moment polytope | - |
dc.subject.keywordAuthor | Symmetric variety | - |
dc.subject.keywordAuthor | wonderful compactification | - |
dc.subject.keywordAuthor | K-stability | - |